CS 6200: Algorithmics II Fall 2020
Instructor: Avah Banerjee, S&T.
Lectures: 26 Dates: 10/26

1 Set-Cover problem

Theorem 1.1 Suppose there exist X = {x1,x9,...,2,}, and F = {S1,S59,...,5n}, an instance
(X, F)of the set-covering problem consists of a finite set X and a family F of subsets of X, such
that every element of X belongs to at least one subset in F:

x=1Js

SeF

We say that a subset S € F covers its elements. The problem is to find a minimum-size subset
H € F whose members cover all of X:

x=1Js

SeH

There is an equivalent problem is named as Hitting-set problem. It is to find a subset H C X
of minimum size such that VS; € F, S(X # 0

Consider the bipartite graph G(X', F), there is an edge (z,S) if x € S

X S

| S1 81 = {$1,$2,$3,£I37}
i; S2 S22 = {331,$4,$5}

L4 §3 83 = {$3, 335,$7}

Is

T S4 S4 = {$4,$6}

L7 S5 S5 = {$2,3?3,336}

Fig. 1: The graph in theorem

In Fig. [l the set-cover problem is to find the a subset of the right subsets S; such that every
element is part of at least one subset. The hitting-set problem is to find a subset of the left vertices
x; such that all the sets are covered.

A greedy approximation algorithm for set-cover problem

As shown in Algorithm [I, The greedy method works by picking, at each stage, the set S that
covers the greatest number of remaining elements that are uncovered.

The algorithm works as follows. The set I contains, at each stage, the set of remaining uncovered
elements. The set C contains the cover being constructed. Line 4 is the greedy decision-making step,

Algorithm 1 Greedy-Set-Cover (X, F)

1: U = X (uncovered elements)
2: C = X (selected sets)
3: while i/ # 0 do
4 select an S € F that maximizes |S U]
5: U=u-=5
6 cC=CcUS
7: end while
8: return C

choosing a subset S that covers as many uncovered elements as possible (breaking ties arbitrarily).
After S is selected, line 5 removes its elements from U, and line 6 places S into C. When the
algorithm terminates, the set C contains a subfamily of F that covers X.

Theorem 1.2 GREEDY-SET-COVER is a polynomial-time p(n)-approzimation algorithm, where
p(n) = H(max|S|: S € F).

Proof: Let S; denote the i th subset selected by GREEDY-SET-COVER; the algorithm incurs
a cost of 1 when it adds S; to C, where the C is the total cost. We spread this cost of selecting
S; evenly among the elements covered for the first time by S;. Let ¢, denote the cost allocated to
element x, for each € X. Each element is assigned a cost only once, when it is covered for the
first time. If x is covered for the first time by §;, then:

1
|S¢ — (31 UuSyu --- USZ‘_l)‘

Cyp =

Each step of the algorithm assigns 1 unit of cost, and so:

Cl = ch

TeEX

Each element x € X is in at least one set in the optimal cover C*, and so we have:

SYazYe

SecC* xeS TeEX

Combining equations above, we have that:

CI<>d > e

SeC* xzeS
Then we need to proof that for any set S belonging to the family F, > _sc, < H(|S|), which

is in the lemma proof
Then we have:

zeS

cl < > H(SI) <[C*| - H(maz{|S|: S € F})
Sec*

thus proving the theorem that GREEDY-SET-COVER is a polynomial-time p(n)-approximation
algorithm . [|

Lemma 1.3 For any set S belonging to the family F, Y s c. < H(|S]).

Proof: Consider any set S € F and any ¢ = 1,2, ...,|C|, and let p; = |S; — (S1US2U ---US;_1)| be
the number of elements in S that remain uncovered after the algorithm has selected sets S, So, ..., S;.
Define pg = S. Suppose S; is the set picked by the GREEDY-SET-COVER and § is any set. Due
to the greedy-choice property, we have:

‘Sl - (817827 7SZ)| S ‘S - (817827 781)‘ = pPi—1

because the greedy choice of S; guarantees that Scannot cover more new elements than S; does
(otherwise, the algorithm would have chosen S instead of S;).
Also, Since §; is covered monotonically, we have p;—1 > p;, we have:

Pi—1

k k pi—1
1 1 1)
ST SRR S o e S S ST T Epn
z€S i=1 pi-1 i=1 j=pit+1 pi-1 i=1 j=pit1 J
Pi—1 1 Pi 1 k
= Z (Z i 5) = Z (H(pi—1) — H(p;)) = H(po) — H(pr) (because the sum telescopes)
i=1 j=1 j=1 i=1

= H(po) — H(0) = H(po) (because H(0)=0)

0 1
ZZ*. = H(|S])
=17

Therefore, there exists S, > sz < H(|S]) [|

z€eS

Lemma 1.4 Lower Bound: For everyl > a > 0, there are no ((1—a) lnn)-approximation schemes
unless P = NP.

Proof: Following is the proof of : fully polynomial-time approximation scheme (FPTAS) =
pseudo-poly exact algorithms.

Suppose the ALG (algorithm) be an FPTAS for some minimization problem P, and which is
integral valued. For all instances of P of size n, let W be largest value of any solutions. For any
numeric value in any instance. Let ¢ = % Cost C of the solutions returned by the ALG, we have:

(1+e)-C* <C" +e-C*<C* +e-W = C* +1

Then, C'= C*. Further, the ALG runs in a polynomial time, i.e. O(poly(n, W)) [|

	1 Set-Cover problem

