
CS 6200: Algorithmics II Fall 2020

Instructor: Avah Banerjee, S&T.

Lectures: 26 Dates: 10/26

1 Set-Cover problem

Theorem 1.1 Suppose there exist X = {x1, x2, ..., xn}, and F = {S1, S2, ..., Sm}, an instance

(X ,F)of the set-covering problem consists of a finite set X and a family F of subsets of X , such

that every element of X belongs to at least one subset in F :

X =
⋃
S ∈ F

S

We say that a subset S ∈ F covers its elements. The problem is to find a minimum-size subset

H ∈ F whose members cover all of X :

X =
⋃
S ∈ H

S

There is an equivalent problem is named as Hitting-set problem. It is to find a subset H ⊆ X
of minimum size such that ∀Si ∈ F , S

⋂
X 6= ∅

Consider the bipartite graph G(X ,F), there is an edge (x,S) if x ∈ S

x3

x4

x5

x6

x7

x1 s1

s2

s3

s4

s5

x2

X S
s1 = {x1, x2, x3, x7}

s2 = {x1, x4, x5}

s3 = {x3, x5, x7}

s4 = {x4, x6}

s5 = {x2, x3, x6}

Fig. 1: The graph in theorem 1.1.

In Fig. 1, the set-cover problem is to find the a subset of the right subsets Si such that every

element is part of at least one subset. The hitting-set problem is to find a subset of the left vertices

xi such that all the sets are covered.

A greedy approximation algorithm for set-cover problem

As shown in Algorithm 1, The greedy method works by picking, at each stage, the set S that

covers the greatest number of remaining elements that are uncovered.

The algorithm works as follows. The set U contains, at each stage, the set of remaining uncovered

elements. The set C contains the cover being constructed. Line 4 is the greedy decision-making step,

1

Algorithm 1 Greedy-Set-Cover (X ,F)

1: U = X (uncovered elements)

2: C = X (selected sets)

3: while U 6= ∅ do

4: select an S ∈ F that maximizes |S
⋂
U|

5: U = U − S
6: C = C

⋃
S

7: end while

8: return C

choosing a subset S that covers as many uncovered elements as possible (breaking ties arbitrarily).

After S is selected, line 5 removes its elements from U , and line 6 places S into C. When the

algorithm terminates, the set C contains a subfamily of F that covers X .

Theorem 1.2 GREEDY-SET-COVER is a polynomial-time ρ(n)-approximation algorithm, where

ρ(n) = H(max|S| : S ∈ F).

Proof: Let Si denote the i th subset selected by GREEDY-SET-COVER; the algorithm incurs

a cost of 1 when it adds Si to C, where the C is the total cost. We spread this cost of selecting

Si evenly among the elements covered for the first time by Si. Let cx denote the cost allocated to

element x, for each x ∈ X . Each element is assigned a cost only once, when it is covered for the

first time. If x is covered for the first time by Si, then:

cx =
1

|Si − (S1 ∪ S2 ∪ · · · ∪ Si−1)|

Each step of the algorithm assigns 1 unit of cost, and so:

|C| =
∑
x∈X

cx

Each element x ∈ X is in at least one set in the optimal cover C∗, and so we have:∑
S∈C∗

∑
x∈S

cx ≥
∑
x∈X

cx

Combining equations above, we have that:

|C| ≤
∑
S∈C∗

∑
x∈S

cx

Then we need to proof that for any set S belonging to the family F ,
∑

x∈S cx ≤ H(|S|), which

is in the lemma 1.3 proof 1

Then we have:

|C| ≤
∑
S∈C∗

H(|S|) ≤|C∗| ·H(max{|S| : S ∈ F})

2

thus proving the theorem that GREEDY-SET-COVER is a polynomial-time ρ(n)-approximation

algorithm .

Lemma 1.3 For any set S belonging to the family F ,
∑

x∈S cx ≤ H(|S|).

Proof: Consider any set S ∈ F and any i = 1, 2, ..., |C|, and let ρi = |Si−(S1∪S2∪ ···∪Si−1)| be

the number of elements in S that remain uncovered after the algorithm has selected sets S1,S2, ...,Si.
Define ρ0 = S. Suppose Si is the set picked by the GREEDY-SET-COVER and S is any set. Due

to the greedy-choice property, we have:

|Si − (S1,S2, ...,Si)| ≤ |S − (S1,S2, ...,Si)| = ρi−1

because the greedy choice of Si guarantees that Scannot cover more new elements than Si does

(otherwise, the algorithm would have chosen S instead of Si).

Also, Since Si is covered monotonically, we have ρi−1 ≥ ρi, we have:

∑
x∈S

cx ≤
k∑
i=1

(ρi−1 − ρi) ·
1

ρi−1
=

k∑
i=1

ρi−1∑
j=ρi+1

1

ρi−1
≤

k∑
i=1

ρi−1∑
j=ρi+1

1

j
(because j ≤ ρi−1)

=
k∑
i=1

(

ρi−1∑
j=1

1

j
−

ρi∑
j=1

1

j
) =

k∑
i=1

(H(ρi−1)−H(ρi)) = H(ρ0)−H(ρk) (because the sum telescopes)

= H(ρ0)−H(0) = H(ρ0) (because H(0) = 0)

=

ρ0∑
j=1

1

j
= H(|S|)

Therefore, there exists S,
∑

x∈S cx ≤ H(|S|)

Lemma 1.4 Lower Bound: For every 1 ≥ α > 0, there are no ((1−α) lnn)-approximation schemes

unless P = NP .

Proof: Following is the proof of : fully polynomial-time approximation scheme (FPTAS) ⇒
pseudo-poly exact algorithms.

Suppose the ALG (algorithm) be an FPTAS for some minimization problem P , and which is

integral valued. For all instances of P of size n, let W be largest value of any solutions. For any

numeric value in any instance. Let ε = 1
W . Cost C of the solutions returned by the ALG, we have:

(1 + ε) · C∗ < C∗ + ε · C∗ < C∗ + ε ·W = C∗ + 1

Then, C = C∗. Further, the ALG runs in a polynomial time, i.e. O(poly(n,W))

3

	1 Set-Cover problem

