
CS 6200: Algorithmics II Fall 2020

Instructor: Avah Banerjee, S&T. Scribe: Andrew Floyd

Lecture: 24 Date: 10/21

1 Completeness Problems

In this lecture we will continue looking at a variety of computational problems, and analyzing them

to determine which class each problem falls under. A lot of these problems can be solved by deriving

from other problems which have already been solved or of which we have already looked at. The

three we looked at last lecture include SAT, Independent Set and Subset Sum. This lecture picks

up where the last one left off by first looking at the clique problem.

1.1 Clique Problem

This problem is defined by the following question: given a graph {< G,K > | G has a clique of

size ≥ k}. A clique is defined as a subset of all vertices in a graph G, all of which are adjacent to

each other, where clique is a complete subgraph of of G. We can prove that this problem is in NP

via a fairly trivial proof. To prove it is in NP-complete, we will show that it can be reduced to the

independent set problem.

Proof: We are going to prove this by showing that INDPSET ≤p CLIQUE. Suppose that

G is the input to INDPSET. Then let G be the complement of G. Now suppose that G has an

independent set S of size k. Then, S is a clique in G. The same will hold in the other direction.

Thus, we see that the CLIQUE problem can be reduced to the INDPSET problem.

We can see that this reduction can be done in polynomial time because we simply remove edges

and then add edges to our graph where there are no edges. Thus is takes linear time to convert

our instance of G into G.

1.2 Vertex Cover Problem

The vertex cover problem is defined by the following question: given a graph {< G,K > |G has a

vertex cover of size ≤ k}. Proving that VERTEX COVER is in NP time is also fairly trivial, and

can essentially be proven in one line. Given a set that we claim is vertex cover, we just check every

edge in the overall graph and make sure that one of its endpoint is in that set. The proof certificate

is just the subset of edges. As we know, to prove a problem is NP-complete, we first must prove

that the problem is NP-hard, which will be our first course of action here. We will use an existing

NP-complete problem, and then reduce that problem to our problem, which is VERTEX COVER

in this case. We can use INDPSET again for this reduction. Just to review, for the vertex cover

problem, we are wanting to find a subset of vertices such that all the edges are incident.

Proof: We are going to prove this by showing that INDPSET ≤p VERTEX COVER. Suppose

that G has an independent set S of size s. Then every edge in G has at least one endpoint in V \S.

Then V \S is a vertex cover of G that is of size (n− s). The other direction will hold the same and

is similar to prove.

1

Avah Banerjee

S
V − S

Fig. 1: Vertex Cover Proof Example

1.3 Edge Cover Problem

Edge cover is defined as a subset of edges M ⊆ E such that for all vertices in the graph (v ∈ V),

there exists an edge in M (e ∈M) such that a vertex is incident to this edge (v ∈ e). When looking

at this problem, we first must ask, is edge cover in NP? We can verify that this problem is in

polynomial time by giving an edge covering, then checking it’s size to see if it is less then or equal

to k. Now we must see if this problem is NP-hard, so that we can then verify if it is NP-complete.

But in this case, we do have a polynomial time algorithm to find the smallest edge cover. This can

be done by find a maximum matching and then extending it greedily so that all of the vertices are

covered. Thus, this problem is not NP-hard, or NP-complete for that matter.

The edge cover is a great example of a problem that looks very similar to a problem that is

NP-complete (vertex cover), but is actually quite easy to verify a solution in polynomial time.

1.4 Hamiltonian Cycle (Hamcycle)

Below is the Peterson Graph; it is a famous type of graph used to give lots of counterexamples and

examples with computer theory.

v4

v5

v2v1

v3

v9

v8

v7v6

v10

Fig. 2: Petersen Graph

Remark 1.1 Is the Petersen graph Hamiltonian?

A Hamiltonian Cycle is defined as a graph where {G | G is Hamiltonian}. In order to prove

that a graph, such as the Petersen graph, does not have a Hamiltonian circuit, there is no general

way or short answer on how to do this. In general, you have to look at all possible cycles and verify

that none of them work. We can verify that this problem is in NP by counting the vertices and

2

then checking that each vertex is connected to the next one by an edge, and that the last vertex is

connected to the first vertex. It takes time proportional to n, since there are n number of vertices

to count and n edges to check. Now that we know this problem in is NP, we must prove that it is

in NP-complete.

Theorem 1.1 A HAMCYCLE is in NP-Complete.

Proof: We knows that HAMCYCLE is in NP. Given a graph G with a cycle, we can verify

in linear time whether the cycle is Hamiltonian. To prove that HAMCYCLE is NP-hard, we will

show that VERTEX COVER ≤p HAMCYCLE. Let G be the input of VERTEX COVER, and we

will construct an instance G′ of HAMCYCLE. For every edge (u, v) in G, create a edge-gadget in

G′ (this can be seen below in Figure 3). Given this structure, there is only three possible ways to

traverse all of the the vertices, given a ’u-side’ and a ’v-side’, as pictured below:

1. Enter from the u-side, go somewhere else in the graph, and then come back through the other

side (v-side)

2. Enter and exit through the u-side

3. Enter and exit through the v-side

u side v side

Fig. 3: Edge-Gadgets with a u side and v side

Suppose we have a graph with 5 vertices, such as the one in figure 4. For every edge, we will

create a gadget such that there is a positive and negative end of each line (this can be seen in figure

4). We then label each side of each gadget such that it corresponds to the appropriate vertex in

our graph. We will connect each gadget by going from a negative end to a positive end. We can

use these gadgets to cover the same number of vertices as we would if we were actually traversing

the actual graph. Next, we will add k number of selector vertices (s1, s2 to sk in this case). For

every u, we will connect the first positive u and the last negative u to each selector.

If we have a vertex cover (µ1, ..., µk) of size k, the idea would be to use paths to cover all of the

edges that are covered by each item in the vertex cover, iterating through the list one by one. To

3

+ + + + + + + ++ +

- - - - - - - - - -

v

x

y

u w

.....s1 s2

G’

vu uw uy xy xv

sk

Fig. 4: Edge-Gadget Graph of G’

start, we will connect the selector vertices by attaching edges between them and the structures we

have so far. This concept is a bit confusing, but basically each vertex will be connected to each

selector variable at both the positive and negative ends.

Continuing with our proof, we will show that the size of G′ is polynomial(|G|). Suppose that

G has n-vertices and m-edges. Then we know the number of vertices in G′ = 12n + k ≤ 13n and

that the number of edges in G′ = 14m + (2m − n) + 2kn = O(m + n2). Thus, this reduction can

be done in polynomial time.

The final and crucial part of this proof is to show that if the original graph has a vertex cover

of size k, then this new graph has a Hamiltonian cycle. We will use the same graph as before, but

this time just adding one edge from u to x, in order to show all of the possible cases (this graph has

the same cover, size = 2). We will show that this construction has a Hamiltonian cycle, starting

from s1. The key to remember here is that if both endpoints of an edge are in the cover, then we

will traverse those two parts independently (either enter/exit from the u-side or v-side). However

if an edge is only covered by one vertex in the cover, then we will enter from the u-side and exit

from the v-side. The final path is shown below with arrows showing it’s direction. We can see in

this figure that we have a path that starts from s1 and ends from s1, thus we have a Hamiltonian

cycle. The same can be seen with s2.

So in summary, if a graph has a vertex cover of size k, then this construction gives us a

Hamiltonian cycle. We can create multiple G′ up to k, and one of those graphs will have a

Hamiltonian cycle. Thus we have proven that HAMCYCLE is NP-complete.

4

+ +

- -

v

x

y

u w

s1 s2

Suppose G has a vertex cover S of size k

+

- -

+ + +

- -

+ +

- -

+ +

- -

+ +

- -

ux vu uw uy xy xv

Fig. 5: Edge-Gadget Graph of G’ with Flow

1.5 Traveling Salesman Problem (TSP)

This problem looks at the situation where given a graph = {G, cost, k |G has a Hamiltonian cycle

of cost ≤ k}. TSP is trivial to show that it belongs to NP because if someone gives you a particular

cycle you can verify if it is Hamiltonian cycle and the cost is ≤ k by simply counting up the cost.

To show TSP is NP-complete, we can show that HAMCYCLE ≤p TSP.

Proof:

Start by creating a graph G′ as the following: G′ is complete, and |V (G′)| = |V (G)| = n. The

cost(uv) = 0 if uv ∈ E(G). Else, then the cost(uv) = 1. G is Hamiltonian iff G′ has a zero cost

tour.

5

	1 Completeness Problems
	1.1 Clique Problem
	1.2 Vertex Cover Problem
	1.3 Edge Cover Problem
	1.4 Hamiltonian Cycle (Hamcycle)
	1.5 Traveling Salesman Problem (TSP)

