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1 Linear Programming

This lecture looks at the second example of linear programming, where we formulate Maximum

flow as a linear program.

1.1 Duality of Linear Programming

Duality is one of the central concepts when it comes to convex programming. This is because,

whenever there is duality, there is a possibility of a polynomial time solution. Whenever the dual

structure is not possible, then the possibility of a polynomial time is very small.

The objective here is to show that a given linear program is a dual linear program. The linear

program objective function and constraints are defined as follows:

maximize: cTx

subject to: Ax ≤ b
x ≥ 0

The dual linear program is defined as follows:

maximize: bT y

subject to: AT y ≥ c
y ≥ 0

Here the linear program is a maximization problem and so the dual linear program will be a

minimization problem and vice versa if otherwise. For a maximization problem, the dual linear

program will give the upper bound and in such a case the linear program is known as the primal

and the other the dual of this primal. So, the dual here gives the upper bound for the primal.

Taking an example here to clearly understand the duality concept. In this example consider

the following as the linear program objective function and the constraints:

maximize: 2x1 − 3x2 + 3x3
subject to: x1 + x2 − x3 ≤ 7

−x1 − x2 + x3 ≤ 7

x1 − 2x2 + 2x3 ≤ 4

x1, x2, x3 ≥ 0

The dual linear program objective function and constraints are as follows:

maximize: 7y1 − 7y2 + 4y3
subject to: y1 − y2 + x3 ≥ 2

y1 − y2 − 2y3 ≥ −3

−y1 + y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0

Here the dual linear program is arrived from the dual linear program described above.
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Now if the equations are cross multiplied, we arrive at,

(y1 − y2 + y3)x1 − (y1 − y2 − 2y3)x2 + (−y1 + y2 + 2y3)x3 ≤ 7y1 − 7y2 + 4y3
Here, if we give some values to y1, y2andy3 and we substitute the values back in the above

equation, then we arrive at the equation as below,

α1x1 + α2x3 + α3x3 ≤ β
where, α1 ≥ 2, α2 ≥ −3andα3 ≥ 3 and even if the values of α1, α2andα3 are greater than the

given values it will still be less than or equal to β.

1.2 Example: Maximum Flow

We take the problem of finding the maximum flow between source s and sink t and solve it using

linear programming.

The objective function here is to maximize the flow from s to t. The flow value from s is the

difference of the amount of flow going out of s to the sum of flow coming into s.

∑
v∈V

fsv −
∑
v∈V

fvs (1)

The constraints that this is maximized are as follows:

• Capacity constraint

The capacity constraint says that the flow between two vertices should always be less than

or equal to the capacity for all edges in the graph

fuv ≤ cuv,∀(u, v) ∈ E (2)

• Flow conservation

Flow conservation says that for every vertex which is neither the source s or the sink t, the

amount of flow coming into the vertex should be equal to the amount of flow going ot of the

vertex.

∑
v∈V

fvu =
∑
v∈V

fuv, ∀u ∈ V − {s, t} (3)

• Flow constraint

The flow must never be negative.

fvu ≥ 0,∀(u, v) ≥ 0 (4)

These set of constraints apply to all the edges in the graph. For the first and the last constraint,

there are atmost 2m constraints and n-2 for the second one. So totally the size of the program is

of the order O(m+n).
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1.2.1 Duality of Linear Program of Maxflow

The objective here is to convert the maximum flow problem into a circulation problem so that the

primal and the dual objective functions and constraints can be defined. In order for this, we need

to add an edge from sink t to source s which has infinite capacity. In the case of circulation here,

it is the same as that if the flow but the net flow going in and going out of each vertex should be

0 and also the flow conservation should be satisfied for s and t, and this makes the formulation of

the problem much simpler.

The problem here is basically to find the maximum flow from t to s and this here is equal to

the flow going out from s to t in the original graph. So, here we maximize the flow from t to s and

define the primal as:

maximize: fts
subject to: fuv ≤ cuv,∀(u, v) ∈ E∑

v fvu −
∑

v fuv ≤ 0

fuv ≥ 0,∀(u, v) ∈ E

The second constraint here is similar to the one in the original, because every cycle present in

the the new graph has flows and the flows inside every cycle is 0 and this can be shown to this

inequality constraint.

Here, the co-efficient of fts is 1, which we can derive from looking at the original primal-dual

definition. So this means that the vector c is 1. Now, for each of the capacity constrains, a dual

variable is defined. One such variable we define with respect to the first constraint on the primal

definition is duv that interprets as distance where (u, v) is an edge. Another variable is created

corresponding the the second constraint in the primal definition is Pu that interprets as potential,

where u is any vertex.

Now, the dual part of the problem is defined as follows:

maximize:
∑

uv∈E cuvduv
subject to: duv + Pv − Pu ≥ 0,∀(u, v) ∈ E

Ps − Pt ≥ 1

duv ≥ 0,∀(u, v) ∈ E & Pu ≥ 0,∀u ∈ V

If we compare this dual definition with the original general definition, we can see that the b

vector here is a column vector consisting of all the capacities cuv and all 0s. Then y will be a

column vector as well, consisting of all duv and all Pu values. Now, if bT is taken we get the

objective function which is
∑

uv∈E cuvduv.

Here, we are talking about the sum of all co-efficients of the variables and making the corres-

ponding co-efficient function in the objective function greater than the variable. fts is the only

variable here for which the co-efficient is non-zero. Now, there is not constraint for fts in the first

constraints since it is not part of the original set of the edges and the capacity is infinite and hence

it doesn’t have any constraints.

In the second constraint, the variable fts appears on the left side of the difference operator as

well as on the right side and this is the only two times it appears and so we get, Ps−Pt ≥ 1. From
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this for each duv, we get Pv − Pu and hence we get the second constraint in the dual part

References and Further Reading

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Intro-

duction to Algorithms, Third Edition (3rd. ed.). The MIT Press.

4


	1 Linear Programming
	1.1 Duality of Linear Programming
	1.2 Example: Maximum Flow
	1.2.1 Duality of Linear Program of Maxflow



