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1 A Review of Geometric Structures

We begin by reviewing some simple geometric structures in the Euclidean, d-dimensions (Ed)

space.E1 is a line, E2 is a plane, E3 is a space, and so on. A half-space can be characterized by∑
aixi ≤ b (1)

A plane in d = 3 space is characterized by

a1x1 + a2x2 + a3x3 = b (2)

While a hyper-plane is the generalization of a plane in d-dimensional space∑
aixi = b (3)

You can see from this definition that a line in d = 2 space is also a hyper-plane.

Consider the intersection of three planes in d=3 space. The intersection could be either a point or

a line. However, in d=4 space, the intersection of three hyper-planes could be a plane, a line, or a

point.

We now define the d-simplex as the structure having the minimum number of vertices to create

a d-dimensional solid. For example, the 1-simplex is a line, the 2-simplex is a triangle, and the

3-simplex is the tetrahedron. Next we extend the idea of solids and generalize it to d-dimensions

through the polytrope. in d=2, polytropes are, of course, flat polygons that we are all familiar

with. Finally, we introduce the generalization of an edge as the facet.

2 Linear Programming

Linear programming is a special type of mathematical optimizations which attempt to optimize

linear objective functions. The feasible solution set (or feasible region) for a linear objective function

lies on a convex polytrope in d-dimensional space. The optimal solution for the linear objective

function is the set of vertices on the polytrope which satisfy the inequality constraints. An example

of this polytrope is shown for the d=2 space in figure 1.

Linear Programming is popular because once it is established that a problem can be represented

as a linear programming one, it is then known that a solution can be found in weak polynomial

time O(poly(m,n, φ)) where n is the number of variables, m is the number of constraints, and φ is

the encoding of the constraint coefficients. The variable φ is the reason for the complexity being
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weak. Algorithms with such performance include the ellipsoid method [1] and the interior-point

method [2]. The issue of strong polynomial bounding is still an open problem.

Fig. 1: The Feasible Region

The standard form of a linear programming problem is outlined below.

Maximize cTx (4)

Subject to

Ax ≤ b (5)

x ≥ 0 (6)

Where the number of constraints is equal to the size of the vector b. Eq. 4 is the objective

function for this problem but not all problems have an objective function. Some books teach the

form with with a minimization but both are functionally equivalent.

Common additional constraints are x ∈ Nn where the problem becomes integer linear program-

ming and x ∈ {0, 1}n, which makes the problem binary linear programming. Both of these are

special cases of linear programming with NP-hard complexity and have their own techniques which

will be discussed in future lectures.

2.1 Example: S-T Shortest Path with Linear Programming

Here we provide an example of formulating the S-T shortest path problem for linear programming.

We set the objective for our problem to simply be to maximize the distance dt from the source (S)

to the sink (T ) subject to the following constraints
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dv ≤ du + w(u, v) ∀(u, v) ∈ E (7)

ds = 0 (8)

du ≥ 0 ∀u ∈ V − {s} (9)

where du and dv are the distances from the source to the vertices u, v, respectively while ds is

the distance from the source to itself and is, of course, 0. Eq. 8 is not an inequality and therefore

must be expressed as one. One such expression is shown in eq. 10.

ds ≤ 0, −ds ≤ 0 (10)

Every shortest path function must satisfy these constraints. It may seem a contradiction to

maximize dt when we want to find the shortest path but the constraints on the problem actually

make it work. Eq. 7 prohibits any paths from S to T from being considered if they are longer than

the one already being considered. If the distance function on each of the vertices is given as eq.

11, then we have maximized the variable dt, where for some v ∈ V , dt = dv, when dt is set equal to

the minimum of the set.

∀v, dv = min
(u,v)∈E

{du + w(u, v)} (11)

This is but one example of solving a combinatorial problem with linear programming and more

examples will come in future lectures.
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