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1 Generic Push Relabel Algorithm(GPR)

The generic push-relabel algorithm uses the subroutine INITIALIZE-PREFLOW T to create an

initial preflow in the flow network.

Algorithm [1] creates an initial preflow f defined by,

(u.v).f =

{
c(u, v) if u = s

0 otherwise
(1)

Then the height function is defined by,

h(u) =

{
n if u = s

0 otherwise
(2)

(2) defines the height function because the only edges (u, v) for which u.h > v.h + 1 are those for

which u = s, and those edges are saturated, which means that they are not in the residual network.

Algorithm 1 GPR - INITIALIZE-PREFLOW(G,s)

1: for each vertex v ∈ G.V

2: v.h = 0

3: v.e = 0

4: for each edge (u, v) ∈ G.E

5: (u, v).f = 0

6: s.h = |G.V |
7: for each vertex v ∈ s.Adj

8: (s, v).f = c(s, v)

9: v.e = c(s, v)

10: s.e = s.e− c(s, v)

Algorithm 2 shows that the Initialization followed by a sequence of push and relabel operation,

executed in no particular order gives the GENERIC-PUSH-RELABEL algorithm

Algorithm 2 GPR - GENERIC-PUSH-RELABEL(G,s)

1: INITIALIZE-PREFLOW(G,s)

2: while there exists an applicable push or relabel operation

3: select an applicable push or relabel operation and perform it
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1.1 Analysis

1. When Generic Push Relabel terminates, it produces a flow which is maximum

Lemma 1 (An overflowing vertex can be pushed or relabelled)

Let G=(V,E) be flow network with source s and sink t, let f be preflow and let h be any height

function for f . If u is any overflowing vertex, then either a push or relabel applies to it

Proof: For any edge (u,v), we have h(u) ≤ h(v)+1 , where h is the height function. But if the

h(u) ≤ height of all the surrounding vertex then that is the condition for a relabel operation.

This means that it is possible to always either push or relabel an overflowing vertex.

Lemma 2 (Height of a vertex increases by at least 1 after a relabel operation)

Proof: As stated in lemma 1, before a relabel operation h(u) ≤ h(v),∀(u, v) ∈ E. Then,

after the relabel operation the height of u will 1 more than the minimum of the surrounding

vertices i.e; h(u) = 1 + minh(v)|(u, v) ∈ E

Lemma 3 (Height constraints are never violated by push on relabel operations)

Let G=(V,E) be a flow network with source s and sink t. Then the execution of the GENERIC-

PUSH-RELABEL algorithm of G maintains the height function h.

Proof: This proof is done by the induction of basic operations performed. If we take the PUSH

operation on the edge (u, v) with heights h(u)andh(v), we have h(u) = h(v) + 1 before the

push. Then, after the PUSH we get two conditions of which for the non- saturating condition

it creates 2 edges (u, v)and(v, u) and so the height becomes h(v) ≤ h(u) + 1. Then for the

saturating push the edge (u, v) will not present after the push and arrives the same height

h(v) ≤ h(u) + 1. Noe for relabelling operation, it is divided into 2 cases: one where (u, v)

is the edge and relabelling is happening at u and the second case where there is an incoming

edge to u from w. For the first case before relabel, the height is given as h(u) ≤ h(v), ∀(u, v) ∈
E and after relabel height becomes h(u) = 1 + minh(u) ≤ h(v) + 1, and this satisfies the

height constraint for the edge (u, v). For case 2, this involves incoming edge and so using

the inductive argument before relabel we have the height as h(w) ≤ h(u) + 1∀(w, u) ∈ E

and after the relabel the height increase by 1 and as this was the condition before we arrive at

h(w) < h(u)+1 by utilizing lemma 2. Thus, for both the cases the height constraint is satisfied

and thus for both PUSH and RELABEL operations the height constraint is not violated.

Lemma 4 (If h is a height function satisfying the preflow f , then there are no s− t paths in

G)

Let G=(V,E) be a flow network with source s and sink t, let f be a preflow in G, and let h

be a height function on V. Then there exists no path from source s to sink t in the residual

network G.

Proof: This proof is done using contradiction. Assume that there exists a simple path p

from source s to sink t, then let p = (s = v0, v1, ....., t = vk). Since p here is a simple path
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k = |V |and(v0, v1, ...., vk) ∈ E. As h is the height function, h(v1) = h(v2)+1, h(v2) = h(v3)+1

and so on till h(vk+1) = h(vk) + 1. Now, combining all these inequalities over path p, we

obtain h(s) ≤ h(t) + k. Now as we have defined the height function, h(s) = n and h(t) = 0

and since height is valid ∀i ∈ (0, 1, 2, ..., k − 1), such that h(vi) ≤ h(vi+1) + 1. This results

in h(v0) ≤ h(v1) + 1 ≤ h(v2) + 1 ≤ ...... ≤ h(vk) + k ≤ h(t) + k < n, and this results in a

contradiction. This means there cannot be any (s, t) path as long as the height function is

valid.

Now from all the lemma’s 1 to 4 are used to prove that whenever the GPR terminates the

flow it produces is the maximum flow

A preflow where no vertex is overflowing is a flow. If f is a preflow, then after a PUSH (u, v),

f
′

is also a preflow. The RELABEL after the PUSH operation also does not change the

preflow because relabel only change the height. So, neither PUSH not RELABEL violates

the preflow. From lemma 1, at termination we can say that no vertex is overflowing and so

we have a flow at the termination. Now from lemma 3, we have a valid height function h

at termination. But, now from lemma 4 we found that if there is a valid height function h

then there cannot be an (s, t) path in the G∗f . So, by the maxflow-mincut theorem, the final

preflow f∗ is the maximum flow.

2. Generic Push Relabel terminates after O(mn) RELABEL and O(mn2) PUSH operations

Lemma 5 (If x is an overflowing vertex, then there is a (x, s)pathinG)

Let G=(V,E) be flow network with source s and sink t, and let f be a preflow in G. Then,

for any overflowing vertex x, there is a simple path from x to s in the residual network Gf .

Proof: Suppose U is the set of all vertices for which there is a path from x to s and we can

take U
′

as the set of all the remaining vertices.

Now if s 6∈ U

=⇒ s ∈ V − U = U
′

Because x is overflowing, e(x) > 0 and x ∈ U

=⇒
∑

u∈U

(∑
v∈V f(v, u)−

∑
v∈V f(u, v)

)
> 0

Since V = U ∪ U
′
,

=⇒
∑

u∈U

[(∑
v∈U f(v, u) +

∑
v∈U ′ f(v, u)

)
−
(∑

v∈U f(u, v)−
∑

v∈U ′ f(u, v)
)]

> 0

=⇒
∑

u∈U
∑

v∈U ′ f(v, u)−
∑

u∈U
∑

v∈U ′ f(u, v) > 0

In other words we can say that there is a positive flow from U i to U. If there is a flow, then

there is an edge from U to U
′

and this means that there is an edge (u, v) where u ∈ U and

v ∈ V . This implies that v is reachable from x and it contradicts the first notion that v is not

reachable from x. So, for every vertex x which is overflowing we can eventually push to s.
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Lemma 6 (The height of a vertex can never be more than 2n− 1)

Let G=(V,E) be a flow network with source s and sink t. During the execution of the

GENERIC-PUSH-RELABEL algorithm on G, we have h ≤ 2n − 1, (where n = |V |, the

number of vertices) for all vertices u ∈ V

Proof: The heights of source s and sink t never changes because these vertices are by de-

finition not overflowing and so h(s) = n and h(t) = 0. Now for some arbitrary vertex u

before the relabel operation it is overflowing. Then, by lemma 5 we can say that there exists

a simple path from u to s and using the same argument used in lemma 4 we can say that,

h(u) ≤ h(v1) + 1 ≤ ..... ≤ h(s) + k =⇒ h(u) ≤ 2n− 1

Remark 1.1 The bound on the number of relabel operations can be found by taking the

number height increases per vertex time (n−2). The height of the each vertex can be changed

atmost 2n−) times, which gives the number of relabel operations as O(n2)

The pushes can be divided in saturating pushed and non-saturating pushes. A saturating

push is when the total residual flow over the edge will be 0 meaning to saturate the edge

capacity and disappears from the residual network. A non-saturating push is when we are

pushing an excess amount of overflow from one vertex to another vertex, but the edge is not

saturated, so the vertex from which the push happens will no longer have overflow after the

non-saturating push.

Lemma 7 (Bound on the number of saturating pushes is O(mn))

During the execution of GENERIC-PUSH-RELABEL on any flow network G=(V,E), the

number of saturating pushes is less that 2mn, where m = |E| and n = |V |

Proof: Here we can say that between two saturating pushes on (u, v), h(v) increases by strictly

greater than or equal to 2. Now before any pus, h(u) = h(v)− 11 and after a saturating push,

that edge becomes saturated and is no longer in the residual network i.e; (u, v) 6∈ Ef . Before

another (u, v) flow from v to u must increase and at some point there might have been a

push from v to u. After the saturating push, h(u) = h(v) + 1 and so this means that h(v)

has increased by atleast 2.This implies that the bound on the number of saturating pushes is

O(mn).
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