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1 Edmonds-Karp algorithm

The Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson algorithm for finding

the maximum flow in a flow network. Rather than considering an arbitrary path as an augmented

path, as done in the Ford-Fulkerson algorithm, the Edmonds-Karp algorithm considers the path

with the minimal length (shortest path) as an augmented path in the residual graph. It identifies

such a path using the breadth-first search technique.

Algorithm 1 Edmonds-Karp(G, s, t)

1: initialize flow f ← 0

2: while there exists an augmenting path p in the residual network Gf do

3: choose augmented path in the flow using Breadth First Search technique

4: update the flow along Gf

5: end while

6: return f

Let m=number of edges and n=number of vertices in a graph that is given as input to the above

algorithm. The run time complexity of the Edmonds-Karp algorithm is O(nm2). In the later part

of the document, we will be proving the same.

We know that for any residual graph the time complexity for finding the shortest path using

the breadth-first technique is O(m). Hence, our aim is reduced to prove that the total possible

augmentations that can occur are O(mn).

Definition 1.1 A path (u, v) in a network flow Gf is called critical when cf (u, v) is minimal along

all the edges in the augmented path containing (u, v).

Lemma 1.1 If the Edmonds-Karp algorithm is run on a graph G = (V,E) with s, t as a source and

sink then the shortest distance δf (s, v) monotonically increases with a sequence of augmentation.

Proof: Let us prove by this by contradiction. Let us assume that for a vertex v in the graph,a

augmentation has decreased the shortest-path distance from s to v to decrease. Let f be the initial

flow and f ′ be the flow after augmentation. So, δ′f (s, v) < δf (s, v). Consider an vertex u in the

flow which is adjacent to v in the shortest path (E′f ). Then in the flow f ′ we have,

δ′f (s, u) = δf (s, v)− 1 (1)

and we have,

δ′f (s, u) ≥ δf (s, u) (2)
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because of how we choose v,we know that distance between vertex u and source did not decrease.

For (u, v) ∈ Ef , it should follow

δf (s, v) ≤ δf (s, u) + 1 (from triangular inequality)

δf (s, v) ≤ δf ′(s, u) + 1 (from Equation (2))

δf (s, v) = δf ′(s, v) (from Equation (1))

(3)

which contradicts our initial assumption. Hence (u, v) 6∈ Ef . As we can see (u, v) 6∈ Ef , but

(u, v) ∈ Ef ′ and we also know that Edmonds-Karp algorithm always has shortest paths in the

augmented flow, this augmentation must have increased flow from v to u. And the shortest path

from s to u had (v, u) as its last stage. Therefore,

δf (s, v) = δf (s, u)− 1

≤ δf ′(s, u)− 1 (From Equation (2))

= δf ′(s, v)− 2 (From Equation (1))

(4)

Therefore, from the time (u, v) becomes critical to the next time the distance between u and s will

increase at least by 2.

As we know the maximum distance between any two vertices in a graph is bounded bym−1 (number

of edges). By considering the previous statement, the number of maximum possible augmentations

is less than m/2. As there are n vertices in a graph. The run time complexity of the algorithm

is O(mn). From the previous assertion, we concluded that the run-time of BFS is O(m). When

combining both the results for the Edmonds-Karp algorithm we can conclude the final run-time is

O(nm2)

2 Max-Flow Min-cut Theorem

Theorem 2.1 Below three statements are equivalent:

1. f is a maximum flow in G

2. Gf does not have any shortest path (augmenting path)

3. |f | = C∗(s, t) for some s− t cut, where C∗(s, t) is also a minimum s− t cut.

Proof: First let us show the equivalence of Statement (1) and (2). (1) =⇒ (2): Proof by

contradiction ¬(2) =⇒ ¬(1)

Suppose there is an augmenting path p in flow f then,

|f ↑ fp| = |f |+ |fp| > |f | (5)

It implies that there exists a flow greater than f , which is contradiction to statement (1).

(2) =⇒ (3) : Suppose Gf does not have an augmenting path, Nw let us divide the vertices in

the flow into two sets S = {v| there exists a path from s to v in Gf} and

T=V - S that is the remaining vertices in the graph.
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This partition can be a cut because the source s ∈ S and t 6∈ S as we know that there is no

path between s and t(statement 2).

(u, v) such that u ∈ S and v ∈ T . Hence (u, v) 6∈ Ef

1. If (u, v) ∈ E.then f(u, v) = c(u, v) the reason being, if the edge (u, v) is removed Ef that

means that it was a critical path in the original graph E.Hence, the flow along the path

containing (u, v) is the equal to the capacity of the edge (u, v)

2. Similarly, if (v, u) ∈ E then we know cf (u, v) = f(v, u).As we do not have (u, v) ∈ Ef the

capacity is 0 and hence f(v, u) = 0 The total flow of the cut

f(S, T ) =
∑

u∈S
∑

v∈T f(u, v)−
∑

v∈T
∑

u∈S f(v, u)

=
∑

u∈S
∑

v∈T c(u, v)−
∑

u∈S
∑

v∈T 0

= c(S, T )

(6)

Therefore , |f | = f(S, T ) = c(S, T )

(3) =⇒ (1) : Assume |f | ≤ C(S, T ).

Since, |f | = C(S, T )(statement 3) then it must be the maximum flow.

Thus,we conclude that the above 3 statements are equivalent.
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