
CS 6200: Algorithmics II Fall 2020
Instructor: Avah Banerjee, S&T. Scribe: Self
Lectures: 1-3 Dates: 8/24 - 8/28

1 Verifying Matrix Product (Freivalds’ algorithm)

Given three n × n matrices A,B,C our task is to verify whether C = AB. Trivially, we can
compute the product first using any standard matrix multiplication algorithm. Then determine if
C−AB = 0. However, the best known matrix multiplication algorithm takes O(n2.372) (as of 2020).
Even though it is conjectured that we can perform matrix multiplication in O(n2+ϵ) time (for every
ϵ > 0) we do know how to do this currently. Since we are tasked to only verify an equality, can we
avoid having to multiply A and B.

Using randomization we will devise a simple algorithm that correctly verifies the equality with
high probability. We say that some statement about an algorithm holds with high probability
(w.h.p.) if the probability tends to 1 as n (size of the input) tends to infinity.

Algorithm 1 A Randomized Matrix Product Verifier
1: Input: A,B,C (all n× n matrices).
2: Output: returns true if C = AB else returns false.
3: Let Bn = {0, 1}n

4: Pick an element r from Bn uniformly at random
5: Compute D ← A(Br)− Cr

6: if D == 0 then
7: return true
8: else
9: return false

10: end if

Sampling r from Bn takes O(n) given access to n random bits. Only “real”computation happens
at line 5 which is a sequence of three matrix-vector multiplication followed by a subtraction. Each
of these operations take O(n2). Thus a single invocation of Algorithm 1 takes O(n2) time.

Theorem 1.1 If AB ̸= C then Algorithm 1 fails with probability ≤ 1/2.

Proof: Let D = AB − C. If AB ̸= C then D ̸= 0. Then some entry in D, say dij must be
non-zero. Suppose the algorithm fails. Then we have ABr = Cr, which implies Dr = 0. Thus for
all i ∈ [n],

n∑
k=1

dikrk = 0 (1)

1

In particular,

rj = −
∑n

k=1,k ̸=j dikrk

dij
(2)

Now we use the principle of deferred decision. Suppose we have selected all rk’s before selecting rj .
At this stage RHS of Equation 2 is fixed. There is at most one value of rj for which the equality in
Equation 2 holds. Since rj can either 0 or 1 with equal probability, we have probability of failure
≤ 1/2.

Although a ≤ 1/2 probability of failure seems bad we can easily improve our odds of success
by running the algorithm multiple times. We can do this easily since Algorithm 1 has one sided
error. At each run we choose a random vector r independently from the other runs. Thus the
event that a particular run fails is independent of the rest of the runs. This meta-algorithm fails if
every individual run fails; probability of this happening is ≤ 1

2t , if we perform t runs of Algorithm
1. The meta-algorithm takes O(tn2) time. If t = log n we see that the algorithm succeeds with
high probability with a running time of O(n2 log n), still better than the current best known matrix
multiplication algorithm.

Remark 1.1 Suppose we are given only n random bits. Can we reuse these random bits to get a
similar result as above?

2 Method of Conditional Expectation

In this section we will use the method of conditional expectation to derandomize a randomized
algorithm. First we recall the definition of conditional expectation (for discrete sample space).
Suppose X,Y are two random variables on the same probability space. The conditional expectation
E[X|Y] is a random variable Z; it is a function of Y .

Z(y) = E[X|Y = y] =
∑
x

xPr[X = x| Y = y]

We can write Z =
∑

x xPr[X = x|Y]. Conditional expectation generalizes the notion of conditional
probability where X and Y are event random variables (a.k.a indicator random variables).

Example 2.1 Suppose we roll two 6-sided dice. The value of the first roll is a r.v, say X1. Similarly
we define X2. Let, X = max(X1, X2), which is the r.v that takes the maximum of the two rolls.
We want to determine the conditional expectation E[X|X1]. Let us first calculate E[X|X1 = i]. If
X1 = i then either X = i or X > i. Thus,

E[X|X1 = i] = i.Pr[X = i|X1 = i] +

6∑
x=X1+1

xPr[X = x|X1 = i]

2

The first term is simply i2/6, since the probability that X2 ≤ X1 is X1/6. Similarly we find
Pr[X = x|X1 = i] = 1/6. Putting these values in the above equation we get,

E[X|X1] =
X2

1

6
+

∑6
X1+1 x

6
=

X2
1 −X1 + 42

12
(3)

Since E[X|X1] is a random variable we can apply the expectation operator on it, giving

E[E[X|X1]] = E[X] =
E[X2

1]−E[X1] + 42

12
≈ 4.5

2.1 Maximum Satisfiability (MaxSat)

Let f be a Boolean function on the set V = {x1, . . . , xn} of variables. f is given as a conjunction
of disjunctions. That is, f =

∧
c∈C C. Here C is the set of clauses and each cluse c ∈ C is a

disjunction: c = xi1 ∨ ¬xi2 ∨ . . . ∨ xinc
. Additionally each clause c has a positive real weight w(c).

In the MaxSat our goal is to maximize the total weight of the satisfied clauses:

max
v∈{0,1}n

∑
c∈C

Icw(c)

Here v is a truth assignment and Ic is the indicator random variable that c is satisfied.

Algorithm 2 A Simple Randomized 2-approximation Algorithm
1: Input: A MaxSat instance f .
2: Output: A truth assignment of the variables.
3: Set each variable independently with probability 1/2 to 1 (true).
4: return this truth assignment.

First we observe that a clause is not satisfied iff all its literals are 0 (false). If the size of a clause
c is k ≥ 1 then Pr[Ic] = 1− 1/2k ≥ 1/2. Let, W =

∑
c∈C Icw(c).

Theorem 2.2 Algorithm 2 produces a truth assignment such that E[W] ≥ OPT/2. Here OPT is
the optimal value of the instance.

Proof: We have,

E[W] =
∑
c∈C

Pr[Ic]w(c) ≥
1

2

∑
c∈C

w(c) ≥ 1

2
OPT.

However, the above result is in expectation. Now we look at a strategy where we can guarantee
that the total weight of the satisfied clauses is at least E[W]. The idea is to choose the truth
assignment for the variables sequentially from 1 to n and build up a complete solution from a
sequence of partial ones. We use the fact that Satisfiabilty is self-reducible1. We determine the

1There is a poly-time reduction from the search version to the decision version of the problem.

3

truth value for the variable xi based on the following strategy. Let E[W |Vi] be the conditional
expectation of W with respect to the subset of variables Vi = {x1, . . . , xi} which already been
assigned a truth value. For every i we can compute E[W |Vi] easily: let CT be the set of satisfied
clauses and CI be the remaining set of clauses after removing all the false literals. Then

E[W |Vi] =
∑
c∈CT

w(c) +
∑
c∈CI

P (Ic)w(c)

Algorithm 3 A Derandomized version of Algorithm 2
1: Input: A MaxSat instance f .
2: Output: A truth assignment of the variables.
3: i← 0, V0 = ∅
4: while i < n do
5: if E[W |Vi ∧ xi+1 = true] ≥ E[W |Vi ∧ xi+1 = false] then
6: Vi+1 ← Vi ∪ {xi+1 = true}
7: else
8: Vi+1 ← Vi ∪ {xi+1 = false}
9: end if

10: i← i+ 1

11: end while
12: return Vn.

Theorem 2.3 The following invariant holds for Algorithm 3: for all i we have E[W |Vi+1] ≥
E[W |Vi].

Proof: We prove this by induction on i. The base case, i = 0 is trivially true. Since we choose
the assignment for xi+1 with equal probability, we have:

E[W |Vi] =
1

2
E[W |Vi ∧ {xi+1 = true}] + 1

2
E[W |Vi ∧ {xi+1 = false}] (4)

Thus we have max(E[W |Vi ∧ {xi+1 = true}],E[W |Vi ∧ {xi+1 = false}]) ≥ E[W |Vi], which proves
the claim of the theorem.

3 Tail Bounds: A Randomized Median Finding Algorithm

Consider the following randomized algorithm to find the median of a set X of elements, where X

has an unknown total order. In the following algorithm we ignore the floor and ceiling operations
for notational simplicity, this does not affect our analysis.

4

Algorithm 4 A simple randomized median finding algorithm
1: Input: A set X, (|X| = n)
2: Output: The (lower) median of X or FAIL
3: Uniformly, independently and with replacement sample a set of n3/4 elements from X. Let Y

be this sampled set.
4: Sort Y

5: Let l = (12n
3/4 −

√
n)th smallest element in Y

6: Let h = (12n
3/4 +

√
n)th smallest element in Y

7: Determine the set C = {x ∈ X| l ≤ x ≤ h} and let nl = |{x ∈ X| x < l}| and nh = |{x ∈
X| x > h}|

8: if nl > n/2 or nh > n/2 or |C| > 4n3/4 then
9: return FAIL

10: else
11: Sort C

12: Output the (⌊n/2⌋ − nl + 1)th element in the sorted order of C.
13: end if

Correctness and Running Time: Correctness follows from the if statement at line 8 of Algo-
rithm 4. Only time the algorithm would fail to produce the correct median if C does not contain
it. This can only happen if either nl > n/2 or nh > n/2. It is easy to verify that all the steps takes
O(n) time in total unless C is large. But in this case the condition |C| > 4n3/4 is satisfied and
the algorithm fails. Hence the algorithm either returns the median or fails and takes O(n) time
(comparisons).

Using tail inequality (here we use the Chebyshev’s inequality) we will upper bound the failure
probability.

Theorem 3.1 Algorithm 4 fails with probability O(n−1/4).

Proof: The algorithm fails if any of the condition at line 8 holds. Let E1 be the event that
nl > n/2. Similarly we define E2 and E3 (|C| > 4n3/4). Then failure probability Pr[E1∪E2∪E3] ≤
Pr[E1] + Pr[E1] + Pr[E1], using the union bound. Due to symmetry Pr[E1] = Pr[E2] so we only
have to find Pr[E1] and Pr[E3].

Let m be the median of X. If nl > n/2 then it must be the case that l > m. Since at most
1
2n

3/4 −
√
n elements in Y are less than l there are at most this many elements in Y which can be

less than m. Let Xi be the following indicator random variable:

Xi =

{
1, if the ith sample is < m.

0, otherwise.
(5)

Since there are ⌊n/2⌋ elements < m and at least as many > m we have Pr[Xi = 1] ≈ 1/2. Thus
Xi’s are distributed according to the Bernoulli distribution with p = 1/2. Thus E[Xi] = 1/2 and
Var[Xi] = 1/4. Now let, Z =

∑|Y |
i Xi. Z is the number of samples in Y less than m. The event

E1 is equivalent to saying Z < 1
2n

3/4 −
√
n. We want to show that Pr[Z < 1

2n
3/4 −

√
n] ≤ 1

4n
− 1

4 .

5

For this we use the Chebyshev’s inequality: Let X1, . . . , Xn are independent random variables
with E[Xi] = µi and Var[Xi] = σ2

i and Z =
∑

Xi then,

Pr[|Z −E[Z]| ≥ δ] ≤
∑

σ2
i

δ2
(6)

Now,

Pr[Z −E[Z] ≤ −δ] ≤ Pr[(Z −E[Z] ≤ −δ) ∨ (Z −E[Z] ≥ δ)] = Pr[|Z −E[Z]| ≥ δ] ≤
∑

σ2
i

δ2
(7)

In our case E[Z] =
∑|Y |

i=1 E[Xi] =
1
2n

3/4 ,
∑

σ2
i =

∑|Y |
i=1

1
4 = 1

4n
3/4 and δ =

√
n. Substituting these

values in Equation 7 we get:

Pr[E1] ≤
1

4
n− 1

4 (8)

Similarly we can show that Pr[E3] ≤ 1
2n

− 1
4 , which is left as an exercise.

References and Further Reading

[1] Mitzenmacher, M., & Upfal, E. (2017). Probability and computing: Randomization and pro-
babilistic techniques in algorithms and data analysis. Cambridge university press. [Chapter 1,
Chapter 2, Chapter 3, Chapter 6- Section 6.3, 6.3]

6

	1 Verifying Matrix Product (Freivalds' algorithm)
	2 Method of Conditional Expectation
	2.1 Maximum Satisfiability (MaxSat)

	3 Tail Bounds: A Randomized Median Finding Algorithm

