CS 5200 Midterm Practice

100 pts. Duration: 75 mins

Submit your answers in a single PDF file.

Problem 1 ($5 \times 5 = 25$ pts): Determine whether the following statements are **true** or **false**. (In the following assume *n* is a non-negative integer and all functions are from the non-negative integers to the positive reals.) (no need to justify your answer)

1. $n^3 = O((\log n)^{\sqrt{\log n}})$

2. If
$$f(n) = \Omega(g(n))$$
 and $g(n) = O(h(n))$, then $f(n) = \Omega(\min(g(n), h(n)))$

- 3. If $S(n) = 4S(\sqrt{n}) + \log n$ for all $n \ge 2$ and S(1) = 1, then $S(n) = O(\log^2 n)$.
- 4. It is feasible for a function f(n) to be $O(n^2)$ when $g(n) = n^3$ and $h(n) = \sqrt{n}$, yet not be O(g(n) + h(n)).
- 5. If $f(n) = 2^n + o(2^n)$, then $f(n) \neq \Theta(2^n)$.

Problem 2 (25 pts) Using the substitution method (do not use Master theorem) solve the recurrence relation T(n) = 2T(n/3 + 2) + O(n), assume T(1) = c is some constant.

Problem 3 (25 pts) Give a polynomial-time algorithm for computing $a^{b^c} \mod p$, given a, b, c and p. You may assume all integers are $\Theta(\log n)$ bits long.

Problem 4 (25 pts) Consider the problem of computing $N! = 1 \cdot 2 \cdot 3 \cdots N$.

- (a) If N is an n-bit number, how many bits long is N!, approximately (in $\Theta(\cdot)$ form)?
- (b) Give an algorithm to compute N! and analyze its running time. You may assume operations involving constant number of bits takes constant time.