CS 5200 Midterm Practice

100 pts. Duration: 75 mins

Submit your answers in a single PDF file.

Problem 1 ($5 \times 5=25$ pts): Determine whether the following statements are true or false. (In the following assume n is a non-negative integer and all functions are from the non-negative integers to the positive reals.) (no need to justify your answer)

1. $n^{3}=O\left((\log n)^{\sqrt{\log n}}\right)$
2. If $f(n)=\Omega(g(n))$ and $g(n)=O(h(n))$, then $f(n)=\Omega(\min (g(n), h(n)))$
3. If $S(n)=4 S(\sqrt{n})+\log n$ for all $n \geq 2$ and $S(1)=1$, then $S(n)=O\left(\log ^{2} n\right)$.
4. It is feasible for a function $f(n)$ to be $O\left(n^{2}\right)$ when $g(n)=n^{3}$ and $h(n)=\sqrt{n}$, yet not be $O(g(n)+h(n))$.
5. If $f(n)=2^{n}+o\left(2^{n}\right)$, then $f(n) \neq \Theta\left(2^{n}\right)$.

Problem 2 (25 pts) Using the substitution method (do not use Master theorem) solve the recurrence relation $T(n)=2 T(n / 3+2)+O(n)$, assume $T(1)=c$ is some constant.

Problem 3 (25 pts) Give a polynomial-time algorithm for computing $a^{b^{c}} \bmod p$, given a, b, c and p. You may assume all integers are $\Theta(\log n)$ bits long.

Problem 4 ($\mathbf{2 5} \mathbf{~ p t s}$) Consider the problem of computing $N!=1 \cdot 2 \cdot 3 \cdots N$.
(a) If N is an n-bit number, how many bits long is N !, approximately (in $\Theta(\cdot)$ form)?
(b) Give an algorithm to compute N ! and analyze its running time. You may assume operations involving constant number of bits takes constant time.

