CS 5200 Homework - 5

Instructor Avah Banerjee

May 1, 2024, 10 PM CST

Problem 1 (30 pts) Given a positive edge-weighted graph $G=(V, E, w)$ and a source vertex s, design an algorithm that can determine the number of shortest path trees with respect to s.

Problem 2 (30 pts) (Modular Shortest Paths) Suppose we define the length of a path $\left(s=u_{0}, u_{1}, \ldots, u_{k-1}=u\right)$ in a positive integer-weighted graph $G=(V, E, w)$ as:

$$
\operatorname{dist}_{p}(s, u)=\left(\sum_{j} w\left(u_{j}, u_{j+1}\right)\right) \quad \bmod p
$$

for some fixed integer $p>0$. Can we still use Dijkstra's algorithm to compute modular shortest paths? Justify your answer.

Problem 3 (40 pts) Suppose you are given a graph $G=(V, E, w)$ with positive integer edge weights and the following twist: for a subset of edges $M \subset E$, the weights are unknown. Along with G, you are also given a shortest path tree T_{s} with respect to some source vertex s. Propose an algorithm that can determine, given the input $\left(G, M, s, T_{s}\right)$, whether there is a valid assignment of weights to the edges with missing weight information such that T_{s} remains a valid shortest path tree with respect to the new weight assignment. Also determine the running time of your algorithm. Justify your answers.

