CS 5200 Homework - 3

Instructor Avah Banerjee

Due: October 31, 11:59PM

Problem 1 Suppose $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a list of n elements with an unknown ordering π (we may assume that n is a power of 2). When selecting a pivot p from X we choose it uniformly at random from X. Then what is the probability that two given elements, x_{i} and x_{j}, will be located in different partitions of the list according to the pivot p ?

Problem 2 Suppose $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a list of n-elements with an unknown ordering. Consider the following randomized sorting algorithm.

```
Algorithm 1 Random Pair Sorting Algorithm
    procedure RandomPairSort( \((X)\)
        Input: \(X=\left\{x_{1}, \ldots, x_{n}\right\}\)
        while X is not sorted do
            Pick a random pair \(\left(x_{i}, x_{j}\right)\) such that \(1 \leq i<j \leq n\)
            if \(i<j\) and \(x_{i}>x_{j}\) then
                Swap \(x_{i}\) and \(x_{j}\)
            end if
        end while
    end procedure
```

Determine on average how many comparisons the above algorithm makes.
Problem 3 Every tree $T=(V, E)$ (an undirected, connected, simple graph with $n-1$ edges) has at least one vertex x such that removing x (as well as all edges incident to it) disconnects the tree into two or more subtrees, each with at most $\frac{n}{2}$ vertices. Given a tree T, devise an algorithm that identifies x and outputs all the disjoint subtrees resulting from the removal of x. Implement this algorithm in Python (using a Jupyter notebook). Test your algorithm with trees of sizes $n=100,500,1000,5000,10000$. For each value of n, compute the average running time using 30 input instances. For this test, you must generate trees randomly. Employ the following recursive procedure: suppose you have generated a tree with $n-1$ vertices. To add the $n^{\text {th }}$ vertex, select a vertex from the existing tree and connect it to the new vertex.

