Homework 2

Due On: March 4, 2021 3:30PM (CST)

Problem 1 (Reversible Circuits) Construct the Toffoli gate using ony the Fredkin gate. Make your construction reversible. Further, any ancilla (extra) bits used must be returned to 0 after computation using the uncomputation trick.

Problem 2 (Amplification) Let $|\eta\rangle$ and $|\zeta\rangle$ be two nearly orthogonal states where $|\langle \eta, \zeta \rangle| = \epsilon \in (0, 1)$. Now consider the two transforms :

$$U_{\eta} = I - 2 |\eta\rangle \langle \eta|$$
 and
 $U_{\zeta} = I - 2 |\zeta\rangle \langle \zeta|$

Let,

$$\left|\zeta(k)\right\rangle = U_{\eta}U_{\zeta}\cdots U_{\eta}U_{\zeta}U_{\eta}U_{\zeta}\left|\eta\right\rangle$$

$$_{k-times}^{k-times}$$

Let $\cos \theta_k = \langle \eta, \zeta(k) \rangle$. Write a python program, that given $|\eta\rangle, |\zeta\rangle$ plots θ_k against k. Experimentally verify if θ_k ever reaches 0 and if so for what minimum value of k. Can you find any relation between this value and ϵ .

Problem 3 Let,

$$A(\alpha,\beta,\gamma) = \begin{bmatrix} \alpha & \beta - i\gamma \\ \beta + i\gamma & -\alpha \end{bmatrix}$$
(1)

where $\alpha, \beta, \gamma \in \mathbb{R}$. Show that $A(\alpha, \beta, \gamma)$ is unitary if and only if $\alpha^2 + \beta^2 + \gamma^2 = 1$. Is $A(\alpha, \beta, \gamma)$ hermitian? Amoung the single qbit gates X, Y, Z, P(S), T, H which of these can be expressed in the above form. Determine the value of α, β, γ for these gates.

Problem 4 Find a pair of 2×2 unitary matrices A and B such that $ABA^{\dagger}B^{\dagger} = iX$, where X is the Pauli-X operator.