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Abstract. In this paper we address the problem of computing the
expected size of the different maximal layers of a random partial
order. That is, given a point set P = {p1, ..., pn} with pi ∈ [0, 1]k

picked uniformly at random, we try to determine the expected size
of successive maximal layers of P . We present an enumerative ex-
pression for this quantity when k = 2 and study its behavior for
higher dimensions using Monte-Carlo based simulations.
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1 Introduction

The problem of computing various parameters of random k-dimensional
partial orders had seen a lot of attention in the 1980s. Notably authors
have studied height, width, number of isolated points, number of linear
extensions, size of the first maximal layer and other such properties of a
random partial order [1–4]. Some of the more general aspects of these type
of results were encapsulated as first order statements on partial orders by
Winkler[1]. For example we already have a tight upper and lower bound
for the height and width of P . Winkler gave the first non-trivial bound for
the expected height h as Θ(n1/k) and showed that the expected width w to
satisfy: 1

en
1−1/k ≤ w(P ) ≤ (lnn)n1−1/k[1]. Later Brightwell tightened the

upper bound to 4kn1−1/k[2].
However, to the best of our knowledge, there has not been any attempt

at computing the distribution of points into different layers of a random or-
der. We only have a bound on the size of the first layer, which is O(logk−1 n)
[3]. Let wm(n, k) be the expected size of the mth layer (1 ≤ m ≤ n). We
want to know how wm(n, k) behaves as a function of n, k and m. We already
have a bound on w1 as stated earlier. In the ideal scenario we want to get
similar bounds for wm(n, k) as we have for w and h. Trivially, wm ≤ w for all
m. We also note that wn = 0 unless P is a total order. Since, w = Θ(n1−1/k)
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and w1 = O(logk−1 n) it can be conjectured that wm initially grows and
then falls as m goes from 1 to n. This is also evident from our empirical
results. Before proceeding on to empirical results we shall first attempt to
come up with an expression for wm(n, 2). In this regard we take an enumer-
ative approach. This is in contrast to a recursive one taken by the authors
in [3] to compute w1(n, k).

The paper is organized as follows: in Section 2 we introduce some prelim-
inary definitions regarding posets and random orders. Section 3 describes
our enumerative strategy. Section 4 concludes with empirical results de-
scribing the behavior of wm(n, k) based on Monte-Carlo type simulations.

2 Preliminaries

We denote P = {p1, ..., pn} as the input set of n points in Ek. The jth

coordinate of a point p is denoted as p[j]. For any points p, q ∈ P , we define
an ordering relation �, such that p � q if p[j] ≥ q[j] ∀j ∈ [1...k]. Clearly,
(P,�) defines a partial order. If p � q then we say that p precedes (or
dominates) q in the partial order and that they are comparable. We say
that p and q are incomparable (denoted by p ‖ q) if p 6� q and q 6� p. The
height h of P is defined as the number of non-empty maximal layers of
P and the width w of P as the size of the largest subset of P of mutually
incomparable elements. Now we can define maximal layers (or simply layers)
of P : Given P its first maximal layer is defined to be the set M1 of points
q ∈ P such that for any other p ∈ P \ q, p 6� q. The lth maximal layer
Ml is recursively defined as the first maximal layer of remainder of P upon
removing from P all the elements of layers from 1 to l − 1. Note that Ml

could be empty and that the maximum size of any layer is ≤ w.
There are several different but related models of random partial orders,

interested readers are referred to [5]. In this paper we shall work with the
model as defined in [1]. That is, we build P by picking points uniformly
at random from [0, 1]k. This is equivalent1 to saying that (P,�) is the
intersection of k linear orders T1 × ... × Tk where the k-tuple (T1, ..., Tk)
is chosen uniformly at random from (n!)k such tuples. Here, each Tj is a
linear ordering (permutation) of {1, 2, ..., n}.

3 An Enumerative Strategy To Compute wm(n, k)

The case when m = 1 is a special one. We know that an element x ∈ P
belongs to the first layer iff it is not dominated by any element in P \ x. It
does not matter how these elements in P \x are related to each other: that

1 Since the event that two points in [0, 1]k share the same coordinate has a null
support.
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is the sub-poset formed by these elements does not decide the membership
of x in M1. Only their individual relations with x does. However, this
notion cannot be extended to compute expected sizes of other layers. From
definitions, x ∈ Mm iff there exists a chain of size m − 1 above x. Hence,
the relationships between elements that dominate x determines which layer
x will belong to. For example the recursive formulation given in [4] fails for
m > 1 precisely because of this reason.

In this section, using enumeration, we will derive an expression for
wm(n, 2). However, the computation depends on whether we can compute
the number of permutations having some increasing subsequence of a given
length or greater. Let us define T (n, l) to be the number of permutations
(of [1, ..., n]) whose largest increasing subsequence has length at least l. The
following theorem gives an expression for wm(n, 2) in terms of T (n, l).

Theorem 1. The expected size of wm(n, 2) is given by:

wm(n, 2) = Wm(n)−Wm+1(n) (1)

where, Wm(n) =(
1

n!

) n∑
i=1

(n− i)!
i−1∑

l=m−1

(
i− 1

l

)
T (l,m− 1)

n∑
j=m

(
j − 1

l

)
(n− j)i−1−l

and (n)k =
∏k−1

i=0 (n− i) is the falling factorial.

Proof. We first sort the vectors in P dimension-wise in descending order.
Relabel the vectors according to their ranks in the sorted order in the
first dimension. Now with respect to this labelling, the (sorted) ordering of
elements in the other dimension is just some permutation of [1, ..., n]. Here,
the first dimension is just the identity permutation (see figure below).
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Fig. 1. Visualizing the four sets U1, L1, U2, L2
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Let us consider the ith vector in this labelling, that is, the vector which has
a rank i in dimension 1. Let it have rank j in the other. Our strategy is to
compute the probability that the vector with rank i in the first dimension
will belong to the mth layer or below. Let this probability be P (i, n). Then,

Wm(n) =

n∑
i=1

P (i, n)

will be the expected number of points which are on or below the mth layer.
Hence, wm(n, 2) = Wm(n)−Wm+1(n).

We compute P (i, n) by counting the number of instances (of the random
order P ) in which this event occurs. In the first dimension the element has
a rank i and in the second it has a rank j. Clearly, for the element to belong
some layer ≥ m, there must exists an increasing subsequence of length at-
least m−1 in U2 consisting of elements only from U1. Here, U1 = (1, ..., i−1)
and U2 = (π(1), ..., π(j − 1)). This in turn can be computed by considering
each possible subset of U1 of size m − 1 to i − 1 and asking how many
ways we can map it to U2. For each l-subset of U1, we can place it in U2

in
(
j−1
l

)
ways and whose elements can be permuted among themselves in

exactly T (l,m−1) ways. Now the rest of U1 (those elements which were not
mapped to U2) is mapped to L2 in (n− j)i−1−l ways. Lastly, the elements
of L1 can be placed into U2 ∪L2 in (n− i)! way. We do this for each subset
of U1 of size ≥ m− 1 and each rank j from m to n. Thus yielding,

P (i, n) =

(
1

n!

) i−1∑
l=m−1

(
i− 1

l

)
T (l,m− 1)

n∑
j=m

(
j − 1

l

)
(n− j)i−1−l(n− i)!

(2)

Which immediately gives the expression for wm(n, 2) as stated in the
theorem.

In order to compute wm(n, 2) from Theorem 4 we need to compute
T (n, k). Authors have found that expressing T (n, k) in terms of some gen-
erating function is quite difficult. In [6] authors prove that ln converges in
distribution to the famous Tracy-Widom distribution [7], where ln is the
size of the largest increasing sequence of a random permutation. Thus it is
possible to numerically approximate T (n, k) (and consequently wm(n, 2))
by first numerically approximating the cumulative probability P (ln ≥ k) of
the Tracy-Widom distribution.
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4 Empirical Approximation of wm(n, k)

Using Monte-Carlo based simulation we study the behavior of wm(n, k) and
w∗(n, k) = maxm wm(n, k). Results of these simulations are shown in the
figures below.
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Fig. 2. Plot showing the behavior of wm(n, k) for different values of k. Here n is
fixed to 1000.
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Fig. 3. Here we see that w∗(n, k) tends to a linear function of n as k increases.
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Not surprisingly, we see that the expected number of non-empty layers
decreases quite sharply, supporting the fact that the expected height is
bounded byO(n

1
k ). It is also interesting to note the behavior of w∗(n, k) as k

increases. It is evident from Fig. 3 that w∗(n, k) tends to a linear function of
n (for a fixed k). This is consistent with the fact that limk→∞ w∗(n, k) = w,
as the number of layers in P decreases and already know that the expected
width w is bounded by O(n1−

1
k ) for fixed k. Thus the shape of a random

order looks to be that of an onion.
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