
PROBLEMS ON SORTING, SETS AND GRAPHS

by

Avah Banerjee
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Dana Richards, Dissertation Director

Dr. Zoran Duric, Committee Member

Dr. Fei Li, Committee Member

Dr. Walter Morris, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Bell, Dean, The Volgenau
School of Engineering

Date: Summer 2018
George Mason University
Fairfax, VA

Problems On Sorting, Sets and Graphs

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Avah Banerjee
Master of Science

George Mason University, 2015
Bachelor of Technology

National Institute Of Technology, Durgapur, India, 2009

Director: Dr. Dana Richards, Professor
Department of Computer Science

Summer 2018
George Mason University

Fairfax, VA

Copyright © 2018 by Avah Banerjee
All Rights Reserved

ii

Dedication

I dedicate this thesis to my mother.

iii

Acknowledgments

This thesis would not have been made possible without my advisor Dana Richards’ mentor-
ship and encouragement. I consider myself very fortunate to have had him as my advisor. I
would like to acknowledge the members of my committee Walter Morris, Fei Li and Zoran
Duric. They help me improve the presentation of this thesis as well as verifying some of
the technical results. I would like to thank the anonymous reviewers for their insightful
critiques of the papers arising out of this thesis. In particular I would like to thank Igor
Shinkar for some of the results on sorting numbers. I would like to thank my previous
advisor Kenneth De Jong for giving me the opportunity to explore different research paths
during the early years of my PhD.

Last but certainly not least I would like to thank my family for their continued support
over the course of all these years.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xiii

I Part I: Problems On Order 1

1 Comparison Models and Problems . 2

1.1 Introduction . 2

1.2 Basic Definitions . 3

1.2.1 Posets . 4

1.2.2 Graphs . 5

1.3 Abstract Comparison Model (ACS) . 6

1.3.1 Methods for Lower Bounds . 7

1.4 Machine Model . 9

1.4.1 Pointer Machines and CBPs . 11

1.5 CBPs with Additional Inputs . 11

1.5.1 Non-uniform Comparison Costs . 12

2 Restricted Comparison Model . 13

2.1 Restricted Cost Model and Sorting . 15

2.2 Background . 17

2.3 Preliminaries . 19

2.4 A Deterministic Algorithm When q = O(n) 21

2.4.1 Basic Idea . 21

2.4.2 A Restricted Case . 22

2.4.3 Initial Sorting . 22

2.4.4 Partition Step . 23

2.4.5 Merge Step . 26

3 Restricted Sorting Continued . 28

3.1 Constructing the Set K . 28

v

3.1.1 Computing An Approximate Median Of X 29

3.1.2 A Divide-and-Conquer Approach . 31

3.1.3 Merge Step . 32

3.1.4 Comparison Complexity . 32

4 Restricted Comparison Model Under Randomization 35

4.1 Restricted Sorting With Randomization . 36

4.2 A Randomized Algorithm . 37

4.3 When G Is A Random Graph . 40

5 Set Maxima . 41

5.0.1 Background . 41

5.1 Previous and Related Work . 43

5.1.1 Our Result . 47

5.2 A Generic Formulation . 47

5.3 Convex Set-System . 49

6 Concluding Remarks . 54

6.1 Restricted Sorting . 54

6.2 Set-Maxima . 56

6.2.1 Local Sorting . 57

II Part II: Problems On Graph Reconfigurations 59

7 Reconfiguration Problems . 60

7.1 General Framework . 60

7.2 Examples of Reconfiguration Problems . 61

7.2.1 Permutation Routing . 62

7.2.2 Acquaintance Time . 62

7.2.3 Sorting Permutations . 63

7.2.4 Visiting Time . 64

7.3 Sequential Model . 65

8 Hardness Of Permutation Routing . 67

8.1 Prior Results . 68

8.2 Computational Results . 70

8.3 A O(n2.5) Time Algorithm for Deciding when rt(G, π) ≤ 2 71

8.4 Determining rt(G, π) ≤ k is Hard for Any k ≥ 3 73

8.5 Connected Colored Partition Problem (CCPP) 77

vi

8.6 Routing As Best You Can . 80

9 Structural Results On Permutation Routing . 83

9.1 Graph Connectivity . 83

9.2 Structural Results . 85

9.2.1 An Upper Bound For h-connected Graphs 86

9.2.2 Relation Between Clique Number and Routing Number 90

10 Sorting Permutations and Sorting Number . 91

10.1 Some Additional Results On Routing . 95

10.1.1 Routing on subgraphs of G . 96

10.2 General Upper Bounds on st(G) . 98

10.3 Bounds on Concrete Graph Families . 102

11 Sorting Network On Trees . 106

12 Sorting Network On A Pyramid . 115

Bibliography . 120

vii

List of Tables

Table Page

10.1 Known bounds on the sorting numbers of various graphs 94

viii

List of Figures

Figure Page

1.1 An example of a poset with 5 elements, X = {a, b, c, d, e}. Here R =

{(a, b), (a, e), (a, d), (e, d), (c, d), (a, a), (b, b), (c, c), (d, d), (e, e)}. Longest chain

(a, e, d) and anti-chain (b, e, c). 4

1.2 Set of partial orders in T for n = 4 when P is the problem of finding the

maximum. 6

2.1 Visualizing the steps. At the bottom of T the shaded boxes represents the

F1-nodes and the blue rectangles the F2-nodes. The outer dashed triangle

represents the full tree T̂ . The tree T̂ is created during the partitioning step

and in the merge step we start from the deepest leaves of T̂ and move upwards. 25

5.1 Polygonal chains. 51

5.2 A case where P and Q are not covers of R. 51

6.1 For the Peterson’s graph (left) there are 10 different Hamiltonian paths (20

total orders). However the starfish graph has none, as it is not Hamiltonian. 56

7.1 The stars of stars has the highest value of acquaintance time O(n3/2). The

outer and inner stars all have degree θ(
√
n). We can acquaint a pebble with

others by placing it on the center of various stars. 63

7.2 Routing the permutation π = (12345678) on a Cube. 66

8.1 A star on the left and a Caterpillar to the right. A tree has γ-type star

decomposition if every subtree has ≤ γn vertices. In a (α, β)-caterpillar

decomposition, every Tj connected to one of the end vertices has size at most

βn and sum total of all vertices in the trees connected to the central spine

(like Ti) is ≤ αn. Every tree has a 1
3 -star or a (13 ,

1
3)-caterpillar decomposition. 69

ix

8.2 The two cycles are shown as concentric circles. The direction of rotation for

the outer circle is clockwise and the inner circle is counter-clockwise. Once,

we choose (πi,s, πj,t) as the first matched pair, the rest of the matching is

forced. Solid arrows indicate matched vertices during the first round. Note

that if the cycles are unequal then the crossed vertices in the figure will not

be routed. 72

8.3 Atomic Gadgets, pairs (a, b) need to swap their pebbles. The unmarked red

circles have pebbles that are fixed. 74

8.4 Variable graph of X. (a) is a special case for mX = 2, (b) is the general case. 75

8.5 The graph Gϕ. 77

8.6 An example of a CCPP instance. 78

8.7 A modified clause gadget (from the proof of Theorem 7.1) for the clause

C = x ∨ y ∨ ¬z. 79

9.1 A situation where C is a cutset of vertices and sets A,B partitions V \ C. . 85

9.2 Although there are 3 edge disjoint paths between A and B all this paths

share the vertex u hence can only be activated (matched) one at a time. . . 85

9.3 G is decomposed into 4 connected blocks, which are connected to each other

via Gh. 88

9.4 The clique H has been contracted into a super-vertex v. 89

10.1 Figure (b) corresponds to a sorting network (not necessarily of optimal depth)

for the tree given in (a). Here π is the identity permutation. Every com-

parator, given by vertical segments (all directed upwards) joining two wires,

always conform to the edges of the tree. 94

10.2 In the tree above, rooted at vertex labeled 1, the dotted line traces a con-

tour for the tree. The contour represented by a path consists of the follow-

ing sequence of vertices from T and their duplicates (indicated by crosses):

(11, a1, 61, 21, 71, 22, 81, 23, a2, 31, 91, a3, a4, 12, 101, 41, 13, 51, 111, 52, 121, a5, a6),

Where ij is the jth copy of vertex labeled i and ak’s are additional vertices

indicated by small red dots. 102

10.3 The Cartesian product graph G = G1□G2. The rows highlighted by blue

regions represents copies of G2. 105

11.1 A balanced decomposition of a tree. 107

11.2 Pair of subtrees joined at the root r. The e/o labels indicate parity. 109

x

12.1 A pyramid △3,2 in 3-dimension . 115

12.2 The graph △′
3,2 after stripping way edges from △3,2 116

xi

Notations
• Following general guidelines are used regarding mathematical notations with few ex-
ceptions.

• All variables, symbols are defined using lower case letters. For example a vertex u of
some graph.

• Sets and structures are written using upper case capital letters. For example, a graph
G.

• As a general rule, any set or tuple whose elements are themselves structures are written
using the Fraktur font. For example, P(S,R) is a partial order, with element set S
and relation set R.

• As a general rule, constants are defined using letters from the beginning of the English
alphabet (a, b, c, . . . etc.).

• As a general rule, we use lowercase Greek letters for parameters (α, β, . . . etc.).

• Problem names are written using the typewriter font.

• As a general rule, functions whose domains are not over integers or reals, have names
that are written using the Calligraphic font.

• Algorithms or methods are written using Sans Serif font.

• 2S is the power-set of S.

• S{2} is the unordered pairs from S and S(2) denotes the set of all ordered pairs of S.

• All logarithms are of base 2 unless specified otherwise.

• We use Õ(f(n)) to denote O(f(n) logc f(n)) for some constant c.

• ω ∈ [2, 2.38] is the exponent in the complexity of matrix multiplication.

• We use |X| to denote the cardinality of X.

• The notation [n] used to denote the set {1, 2, . . . , n}.

xii

Abstract

PROBLEMS ON SORTING, SETS AND GRAPHS

Avah Banerjee, PhD

George Mason University, 2018

Dissertation Director: Dr. Dana Richards

This dissertation sets out to explore the complexity of some fundamental combinatorial

problems in both deterministic and randomized settings. We divide the work into two

parts: 1) Problems on order and 2) Problems on graph reconfiguration. In the former

setting, we first study generalizations of the standard sorting problem followed by a more

abstract problem known as the set-maxima problem. Additionally we look at some special

cases of these problems. In the second part we study some specific versions of the broadly

defined graph reconfiguration problem. Using a matching model we give both structural

and computational complexity results for routing and sorting on graphs. Some of these

results have already been extended by other authors and several interesting problems have

been discovered that remains open. We believe these would be of interest to a broader

audience in the future.

The first part of the dissertation focuses on a structured cost model. This is motivated

by the fact that the uniform cost model does not provide an accurate estimate of the runtime

of an algorithm in many real world scenarios. However, an arbitrary cost model may not

be that useful. It has been proven that even for very simple problems it is not possible to

find a cost-optimal algorithm if the comparison costs are arbitrarily chosen by an adversary.

With this in mind we look at a restricted cost model; we assume that comparison costs are

either 1 or ∞. In this setting, given two objects from our universe we can either compare

them and determine their order, at a cost of one unit, or the pair is incomparable (comparing

them costs ∞) and cannot be compared directly. In our problem description, along with

the set of elements, we are also given an undirected graph. There is an edge between two

elements if and only if the pair can be compared. We also look at the case when this graph

is a random graph. In both of these settings we have made progress with regard to the

problem of sorting when some pairs of elements are incomparable. For example, in the

structured cost model we give the first nontrivial deterministic algorithm for the problem,

which is also optimal for certain special cases. Another comparison-based problem is the

well known set-maxima problem, which is to determine the maximum element of every

subset from a collection of subsets of a given set. The general case has remained unsolved

for about 40 years. Some special cases have been considered in the past. Following this

tradition we give an optimal deterministic algorithm based on a geometric formulation of

this problem.

In the second part of this work, we focus our attention to graph reconfiguration. We

propose a unifying model for graph reconfiguration and discuss several known problems as

special cases of this model. Notably, we study the permutation routing and the oblivious

sorting problem on graphs. For these problems we give several complexity and structural

results. These include proving hardness results of routing and some of its variants. We give

bounds on various routing and sorting parameters, for different family of graphs. Addition-

ally, we also give explicit sorting networks for trees and the pyramid graph, which are the

first of their kind.

Part I

Part I: Problems On Order

1

Chapter 1: Comparison Models and Problems

1.1 Introduction

Informally, an order is a ranking on a set of objects. Many natural problems are solved via

comparisons between objects whose outcomes are determined by an ordering. Indeed most

human decisions are evidently the result of choosing one outcome against another. So it is

of no surprise that many archetypal problems in Computer Science are problems that can

be solved by means of comparisons. We begin with one of the most basic problems: given

a set of numbers find their maximum. Informally, we want to determine:

1. How many comparisons are necessary between the elements to decide that a chosen

element is a maximum?

2. Can we find a maximum element with the necessary number of comparisons?

The first one is a lower-bound problem and the latter is an upper-bound problem. If

we are looking at a set of n elements, then we know the answer to both of these question,

when the problem is to find a maximum element. In fact both these bounds are exactly

n − 1 comparisons. Even though all these facts seems trivial, even for the simple case of

finding the maximum, things can be subtle. For example, why do we always need n − 1

comparisons? We shall discuss this soon.

Sorting is another natural problem that can be solved using comparisons. Any adjective

to describe the importance of sorting will not be adequate. We know that at least ⌈log n!⌉

comparisons are necessary. However, we do not yet know how to sort with exactly this

many comparisons, except when the set of objects is small (< 20) [1]. Fortunately, for most

practical situations, the cost of a comparison (say comparing numbers on a computer) is

cheap. So as long as we do not do too many extra comparisons, it is good enough. What

2

if comparisons are expensive? For example, suppose you are in the real-estate business.

You have 10 houses to sell. You want to determine their price based on their popularity.

However, you can directly compare a pair of houses only if you have the same client go to

both of them. Clearly, this is a case where comparisons are very expensive and you would

want to make as few as you can.

1.2 Basic Definitions

We first define some basic terms related to order on finite sets and graphs. They are needed

for our description of comparison-based models.

Let X be a set of n elements. A pair is comparable if we know their relative values.

Otherwise they are said to be incomparable. A comparison operator takes a pair {u, v} of

elements and returns an ordered pair (u, v) or (v, u) based on whether u ≥ v or u < v

respectively if the pair is comparable. If the pair is incomparable the comparator returns

u ⊥ v. We can think of a comparison operation as an operator on pairs of vertices of a graph

G with vertex set X. Each comparison adds a directed edge from the larger element (lower

rank) to the smaller (higher rank) one, if the two elements can be compared. (Edges that

can be inferred by transitivity are assumed; see below) We say X can be totally ordered if

every pair of elements are comparable. Formally:

Definition 1.1. (Total-Order) If there is a bijection σ : X → [n] such that for every pair

x, y ∈ X, x ≥ y iff σ(x) ≥ σ(y).

We call σ the underlying order of X. We say X is partially ordered if there exists a injective

σ is. Every total order is also a partial order. A partial order on X is specified in terms of

a relation set R ⊂ X ×X. We use P(X,R) to denote the partially ordered set, poset, of X.

We simply use P instead, whenever the intended meaning is clear. The relations in R must

satisfy the following properties: 1) reflexivity, 2)anti-symmetry and 3) transitivity:

(i) The pair (u, u) ∈ R, ∀u ∈ X (reflexivity)

3

(ii) If (u, v) and (v, u) are both in R then u = v. (Anti-symmetry)

(iii) If (u, v), (v, w) ∈ R then (u,w) in R. (Transitivity)

1.2.1 Posets

Definition 1.2. (Anti-chain) A set of mutually incomparable elements is called an anti-

chain of P. The size of the largest anti-chain is called the width of the poset.

Definition 1.3. (Chain) A set of mutually comparable elements are called a chain of P.

The size of the longest chain is called the height of the poset.

a

b

c

d

e

Figure 1.1: An example of a poset with 5 elements, X = {a, b, c, d, e}. Here R =
{(a, b), (a, e), (a, d), (e, d), (c, d), (a, a), (b, b), (c, c), (d, d), (e, e)}. Longest chain (a, e, d) and
anti-chain (b, e, c).

Definition 1.4. (Transitive-closure) Given an anti-symmetric relation set R of X the tran-

sitive closure of R is the relation set,

TC(R) = {(u, v) ∈ X×X| ∃ w1, w2, . . . , wk ∈ X and (u,w1), (w1, w2), . . . , (wk, v) ∈ R}
⋃

R

If (u, v) ∈ R we say u dominates v. Additionally, if there does not exist any w ̸= u, v such

that (w, v), (u,w) ∈ R then u is also a cover of v. The set of covers of u, denoted by C(u),

is the cover set of u. If C(u) is empty then u is a maximal element. On the other hand if

u is not in the cover set of some element then u is a minimal element.

4

Definition 1.5. (Linear-extension) A linear extension of P is a bijection σ : X → [n] of X

such that if (u, v) ∈ R then σ(u) ≥ σ(v).

We use E(P) to denote the set of all linear extension of P and e(P) denote the size of

this set. For a pair u, v let E(u, v) and e(u, v) be the set and number of linear extensions

respectively in which u ≥ v.

Definition 1.6. (Balancing-pair) A pair u, v is called δ-balancing if

min(e(u, v), e(v, u))

max(e(u, v), e(v, u))
≥ δ

for some constant δ > 0.

The best known value of δ of an arbitrary partial order is 3/11 from the celebrated results

of Kahn and Saks[2]. However it is conjectured that δ = 1/3. We know that δ cannot be

less than 1/3. This follows from the fact that the poset with three elements and only one

relation has 3 linear extensions and the remaining comparisons can only reduce the number

of linear extensions by at most 1/3.

1.2.2 Graphs

This section reviews some useful notions about graphs. Unless otherwise stated all graphs

should be assumed simple. Let G(V,E) be such a graph, where V is its set of vertices and

E the set of edges. A graph is called directed if some of its edges have directions. A partial

orientation of a graph is a partial coloring of the edges with two colors. The colors l, r

indicates the direction of an edge and an uncolored edge remains unoriented. Note that we

deviate from the more common definition by allowing some edges to remain unoriented. An

orientation is a special case where all edges have a direction. Further, a partial orientation

is acyclic if it does not induce any monochromatic cycles in G.

We use d(v) to denote the degree (number of edges) of any vertex and d+(v) and d−(v)

to denote the out-degree and in-degree respectively. The transitive closure of a directed

5

graph is another graph where we add a directed edge between every pair of vertices (u, v)

from u to v if in the original graph there was a directed path from u to v.

1.3 Abstract Comparison Model (ACS)

In this section we introduce the comparison model we will use throughout the first Part.

Our input is the set X. Associated with X is a set of permissible partial orders Q that

the elements of X can form. That is, the unknown (partial) ordering of X from which we

compute relations comes from this set Q. Unlike X the set Q is not given to us explicitly

as an input rather implied from the definition of the problem. For example in the sorting

problem Q consists of all n! total orderings of X. Comparison-based-problems (CBPs) can

be thought of as extracting certain relational information about pairs in X such that the

set of relations satisfy some partial order from a set a target orders T. Formally, a CBP is

a function P : Q→ T. Like the set Q, the target set T is property of the problem P and not

explicitly supplied as the input. The notation Pn(X) denotes the problem P which takes

the set X as input and the size of its input is n. We use the subscript n to indicate the

output is given in terms of the input size. When the meaning is clear we shall leave out the

input or the size or both.

x1

x2 x3
x4

x2

x1 x3
x4

x3

x1 x2
x4

x4

x1 x2
x3

Figure 1.2: Set of partial orders in T for n = 4 when P is the problem of finding the
maximum.

Let FindMaxn be the problem of finding the maximum element from a set X of n

elements. In the Figure 1.2 the posets in the target set are shown for n = 4. The set Q in

this case is all possible orderings of X. The target consists of exactly those posets which

6

can be inferred from the solution of the problem without computing additional relations.

For the case of FindMaxn the output or the solution is an element with the maximum value.

Given only this information we can only determine the set of relations where the maximum

element dominates (or equal to) the other elements of the set.

A comparison-based algorithm (CBA) solves Pn(X) if for every ordering in Q it outputs a

relation set RX (function of the inputX) such that its transitive closure TC(R) is consistent

with some poset in the collection T. A relation set R is consistent if there is a poset in T

whose relation set is a subset of TC(R). An optimal comparison-based-algorithm is one

which uses the minimum number of comparisons to solve Pn. The number of comparisons

necessary for an optimal algorithm to solve Pn is the comparison complexity of CC(Pn) of

Pn.

Let us revisit the problem of finding the maximum. We mentioned that it requires

at least n − 1 comparisons and we know that we can use n − 1 comparisons to find the

maximum. So we have CC(FindMaxn) = n − 1. There are very few natural CBPs where

we have an exact result like this.

1.3.1 Methods for Lower Bounds

There are mainly two prevailing methods of determining a lower bound for the comparison

complexity. One is using a “comparison tree” (also known as the information theoretic

bound) and the other is an adversarial method. In this section we discuss these methods.

Comparison Trees

A deterministic CBA is a function A : 2X
(2) → X{2}. Here, 2X

(2)
is the power set of the set

of all ordered pairs from X and X{2} is set of all pairs from X. Given an input instance and

a sequence of comparisons, the algorithm chooses the next pair to compare and keeps going

until TC(R) is consistent with T. These choices could be thought of as descending a binary

tree from the root, where a node represents a comparison and the result of the comparison

decides the child to descend to. The leaves correspond to the output of the algorithm (from

7

the resulting set of relations TC(R)). Thus computation for a specific input is a path on

this tree and the length of this path is the number of comparisons made. Since an algorithm

must give the correct output, for each input, the number of nodes of this tree will be at least

the number of different possible outputs. The depth (longest path from root to a leaf) gives

the minimum number of comparisons necessary to solve the problem for any comparison

based algorithm. We can lower bound this depth by noting that it is minimum if the tree

is perfectly balanced and in that case the depth is log |number of leaves|.

The classic example is the sorting problem. For a given input (the set X) there are n!

different possible orderings. Hence, the minimum depth of any comparison tree for sorting

is ≥ ⌈log n!⌉. As it turns out we also have comparison based algorithm for sorting which are

only off by some constant factor. So we can say that, ⌈log n!⌉ ≤ CC(Sortingn) ≤ c log n!.

However, this method fails to give correct lower bounds for CBPs where the number of

output types are relatively small. For example, there are only n possible answer to which

element is the maximum of X. This gives a lower bound of ⌈log n⌉. However this bound is

loose (too small) which we will show to be n− 1 using the adversarial model.

Adversarial Model

In this model we assume to have two agents, Alice and Bob. Alice is our algorithm which

solves some CBP. Bob picks the input for which Alice has to solve the problem. Further,

Bob knows in advance the sequence of comparisons that Alice will perform given that input.

Bob, being an adversary can choose an input that will cause Alice to fail if she does not use

sufficiently many comparisons. We want to determine the minimum number of comparisons

needed by Alice so that not matter what input is chosen by Bob, Alice always produces the

correct output. The common strategy for computing a lower bound using this model is as

follows: Suppose we want to show that CC(Pn) ≥ f(n), for some function f(n) over the

integers. Then we assume Alice uses at most f(n)− 1 comparisons and show that there is

an input X for which Alice produces an incorrect answer.

8

We saw earlier that the comparison tree model is too weak for finding the maxi-

mum. However we can easily get the optimal bound using the adversarial model. Suppose

CC(FindMaxn) < n − 1. Suppose we perform less than n − 1 comparisons and let u be

the maximum computed by Alice. Since there are n elements, there must have been some

element v that was not compared to u. Bob can make v the maximum element.

Although this model is quite powerful, it is not always easy to guess the function f(n)

and then find the obstructing input.

1.4 Machine Model

For comparison based algorithms we are primarily interested in counting the number of

comparisons. This leads us to use a machine model that conceptually separates comparisons

from other operations like memory access. The model we will use is known as Pointer

Machines. First we give some background about them. The origin of pointer machines goes

all the way back to the middle of twentieth century. These early models, generally describes

a pointer machine as a graph where computation is understood as a graph traversal. We

are also allowed to modify the structure of the graph by adding directed edges, adding

or deleting nodes etc. Typical examples are Knuth’s linking automaton and Schonhage’s

storage modification machine[3]. Due to its age the literature on pointer machine is vast.

However, we only focus on a specific class that is relevant for comparison-based problems.

Specifically, we look at the pointer machine model introduced by Tarjan[4].

Pointer machines have an expandable memory and a finite set of registers. A register

can be of two types: pointer type and data type. A record is a finite collection of fields.

Each field can be of two types : data field and pointer field. All records have the same set

of fields. A pointer specifies (points to) a particular record or is null. We call a field or

a register an element. An element is atomic. An element either stores a single pointer or

an unit of data depending on its type. Machine operations consist of manipulating these

pointers, we discuss them next.

9

Pointer Machine Operations

The notations used here are mostly taken from [4]. Let r denote a pointer register, use s

to denote a data register and t to denote a register of either type. We use ∗r to denote the

record pointed by r and ∗r.f to denote the field labled f of that record. We use← to denote

assignments between elements of same types. All data write operations are destructive.

1. r ← ∅: (place a null pointer in register r)

2. t1 ← t2: (copy from t2 and overwrite it in t1)

3. t← ∗r.f : (copy contents of field f from the record ∗r to register t)

4. ∗r.f ← t: (copy from register t to the field f of the record ∗r)

5. s3 ← op(s1, s2): (apply operation op on data registers s1 and s2 and put the result in

s3)

6. create(r): (create a new record ∗r not pointed to by any existing pointers and make

r point to it)

7. halt: Stop execution.

8. if condition then go to i

9. true: Always true condition.

10. t1 = t2: true iff t1 and t2 are same

11. p(s1, s2): true iff s1 and s2 satisfy the predicate p(,).

The main limitation of pointer machines are that they are not allowed to perform arithmetic

operations on pointer types. That is, operations like,

t3 ← op(t1, t2)

10

where t1, t2, t3 can be of different register types, are not allowed. Further, in the setting of

comparison-based algorithms, we restrict operations on data elements to only comparisons.

These limitations makes it a less powerful machine model than the more commonly used

Random Access Machines (RAMs), where we do not have such limitations as the name

suggests. However, this also makes RAMs harder to study in terms of determining lower

bounds for problems.

1.4.1 Pointer Machines and CBPs

For CBPs the only type of predicate we use is a comparison between elements (data regis-

ters or data fields). We do not have operations like op(s1, s2) on the data elements. Thus

the complexity of CBPs on pointer machines can be decomposed into two parts: 1) num-

ber of comparison predicates, 2) all other operations such as assignment, create, equality

testing, transitive closure etc., during the execution of the machine. Transitive closures can

be computed by traversing from one element to another using a sequence of pointers where

we work with an adjacency list representation of a graph. Further, we can assume all these

operations take some constant time per operation. We call them memory-type operations.

So the total complexity is the sum of these two parts, which for a CBP Pn is denoted by

T (Pn). Obviously, comparison complexity CC(Pn) ≤ T (Pn). For many CBPs the number

of memory-type operations per comparison is generally bounded by a small constant (inde-

pendent of the size of the problem). In this case it is reasonable to upper-bound T (Pn) by

CC(Pn).

1.5 CBPs with Additional Inputs

There are many natural CBPs where the relation set R we need to compute on X depends

on some additional structures. For example, consider the minimum spanning forest problem

(MSFn,m). A vertex disjoint set of trees is known as a forest. If the forest contains all the

vertices of G then it is also a spanning forest. Given an edge-weighted undirected graph G

11

the task is to find a spanning tree for each connected component of G with the minimum

total edge weight. Here, the set X is the set of edges of G. For this problem Q is again

the set of all possible total ordering of X. Solving MSF requires one to compute a partial

order on X, although the precise properties of this poset remain unknown. However, the

structure of G is needed to filter this poset to get the required output. In Chapter 5 we

discuss one such problem called Set-Maxima.

1.5.1 Non-uniform Comparison Costs

One generalization of the comparison paradigm we discussed so far is to make the cost

associated with comparing a pair to be a function of the pair. One such model is the

monotone cost model [5], where the cost of comparing depends on the rank of the pair in

the total ordering of X. An extreme case is when the cost is either 1 or ∞. This can be

specified as a graph G (the additional input) with vertex set X. A pair of elements that

are adjacent in G can be compared, whereas non-adjacent pairs are too cost-prohibitive to

be compared. This will be our main model in Chapters 2-4.

12

Chapter 2: Restricted Comparison Model

We can extend the basic comparison model where comparison costs always are the same

to a one where the costs depends on which pair is being compared. Let us motivate this

with an example similar to what was provided in [6]. Suppose we want to rank different

companies based on certain financial data. However, not all companies have these data

available for free. Comparing financial prospect (say which has a better short-term outlook

with respect to stock price) of two companies requires one to purchase these internal data.

However, for different companies the cost of accruing the data may very. Hence we have

non-uniform costs of comparisons.

So for this setting we have two inputs. One is the set X as before. Another is a cost (of

comparisons) function C : X{2} → R. These inputs can be represented as a edge-weighted

graph G, with vertex set X and weights on an edge between a pair of vertices representing

the cost of comparing them. Henceforth we shall assume the input for this non-uniform

comparison cost model is the pair (X,G).

Competitive Ratio: In the non-uniform cost setting complexity of a problem is not

simply the number of comparisons required to solve it. For example, let us go back to

our running example FindMaxn. Suppose the costs are arbitrary. We know that n − 1

comparisons are required. However, many different choices exists for choosing this set of

n−1 comparisons. Ideally we want to choose the set of comparisons that minimizes the total

cost. However, without knowing the maximum this may seem like a difficult task if the costs

are arbitrary. This leads to a notion of competitive ratio. Suppose omniscient observers

have seen the maximum, however they have to convince you that the element is indeed the

maximum. For this they can decide to give the results of a collection of comparisons that

convinces you that their assertion is correct. This set of comparisons serves as a proof and

13

its cost is the total of all the comparison costs. A proof with the minimum cost is an optimal

proof. The competitive ratio of an algorithm is computed based on this cost (numerator)

and the cost associated with using the algorithm (denominator). Formally, let CA and C∗

be the set of comparisons made by an algorithm A and an optimal algorithm respectively.

Then the competetive ratio of A is

=

∑
(u,v)∈CA

C(u, v)∑
(u,v)∈C∗ C(u, v)

.

Arbitrary non-uniform cost models can make trivial problems become non-trivial, like

finding the minimum [6, 7]. It is known that the lower bound for the competitive ratio in

this case is n− 2. By contrast, in the uniform cost setting the competitive ratio is 1, since

any set of n− 1 comparisons cost the same. There is an (n− 1)-competitive algorithm for

this problem. The basic idea is to maintain a set of possible maximums T . As long as the

set has more than one element find the cheapest comparison, not yet been made, between

some element of the set with some other element not necessarily from the set T . It can be

shown that the total comparison cost in each round is no more than the cost of the optimal

proof certificate. Since there are at most n− 1 rounds we get the above completive ratio.

From the preceding discussion we see that restricting ourselves to a more structured

cost model might lead to more useful results. For example, a common cost model is the

monotone cost model. In this model the cost of comparing a pair is a monotone function

of the values of the pair. For example, we can define a monotonic cost function as follows:

C(u, v) = max(u, v), so the cost of comparing u, v is max(u, v). Here we abuse the notation

to use u, v as both vertices of the graph G and the elements of the set X. Monotonicity

comes from the fact that increasing the value of one element in the pair will not decrease

the comparison cost. Many other semigroup operations satisfy monotonicity. It was shown

in [7] that the best one can do, without knowledge of the minimum, is to get an algorithm

that is within a logarithmic factor of a cost optimal algorithm. This competitive ratio is

14

computed as follows.

Let us look at a cost model that is not monotonic. Consider first a bi-colored cost model.

In this model edges of G are colored red or green. G is called the comparison graph. Cost

associated with comparing a red edge is r and that for comparing a green edge is g. This

model is not monotonic for the following reason. Let r > g. For some triple {u, v, w} of

elements in X with u > v > w, let C(u, v) = g and C(u,w) = r.

If g = 0 and r = 1 we get the problem of sorting a set of elements where some relation

between the pairs are known advance. If the set of green pairs define a poset P with e(P)

number of linear extensions then we know there exists a sequence of at most log e(P) (red)

comparisons that sorts X[2]. However, we do not yet know how to do this algorithmically.

2.1 Restricted Cost Model and Sorting

Inspired by the previous example, we look at a different bi-colored cost model in this thesis.

This model has comparison cost of 1 or ∞. A pair with cost ∞ is considered a “forbidden

pair”. Let G have m edges and q missing edges (forbidden edges). The edge set and the

forbidden edge set are denoted by E and Ē respectively.

There are two version of this problem. In the first setting, one is guaranteed that the

graph G has enough edges that we can always determine a total order for X. We denote it

as FSortingWTn,q(X,G) (here “WT” stands for with total order guarantee). In the other

version there is no such guarantee, which is denoted by FSortingn,q(X,G). We do not yet

have a non-trivial bound for CC(FSortingWT). We believe that the comparison tree model

is too weak for this purpose. For example, given a comparison graph G the number of

different acyclic orientations of G gives an upper bound on the number of possible answers

as each correspond to a unique total order, if we have the total order guarantee. Since,

G has ≤
∏

v∈V (dv + 1) ≤ nn different acyclic orientations[8] we cannot get a better than

Ω(n log n) for CC(FSortingWT) using the comparison tree model. We believe this bound to

be weak for this problem. In fact for some graphs we get degenerate bounds. For example if

15

G has n−1 edges and so G is a Hamiltonian path. Then we can determine the unique total

order by just making one comparison. Since there are only two acyclic orientations of the

edges of this Hamiltonian path. A solitary probe is then used to determine the direction of

this ordering.

For the latter case where a total ordering may not be achieved we have a better bound.

Note that the lower bound is given by finding a specific comparison graph that serves as an

obstruction.

Theorem 2.1. There exist some comparison graph G for which, CC(FSortingn,q(X,G)) =

Ω(n2 − q).

Proof. Partition X into sets L and R of equal size. Let G be any bipartite graph on (L,R)

with
(
n
2

)
− q edges. We use the adversarial model to prove the lower bound. Given Alice’s

choice of comparisons, let (u∗, v∗) be a pair not compared by Alice. Choose an (adversarial)

partial ordering of X such that for all u ∈ L− {u∗} and v ∈ R− {v∗}, u ≥ v and make the

ordering of u∗, v∗ the opposite of what Alice has computed. Clearly, for Alice to be able to

determine the correct partial order of X she has to look at all edges of G.

Recently authors in [9] gave a lower bound of Ω(n log n + q). Hence the current lower

bound is a combination of these two: Ω(max(n log n+ q, n2 − q)). In both of these results

a specific graph is use to give the lower bound.

In general given an arbitrary graph the minimum number of relations an omniscient

observer must output in a valid proof is the number of covering relations of the underlying

partial order determined by the edges of the graph. If the graph is connected then every

element must be in a covering relation with some other element: either the element is a cover

of some other element or it is covered by some element. Thus there must be at least n− 1

covering relations. Unfortunately the number of covering relations could be much higher

than n−1 for a given graph if there is no total order guarantee. Thus giving the algorithmic

results in terms of competitive ratios for FSorting will not be very useful. Hence we state

the performance of our algorithms directly in terms of comparison complexity. This is

16

consistent with previous studies.

2.2 Background

In this thesis we look at CC(FSorting). First we concern ourselves with only deterministic

results. Randomizations are discussed in Chapter 4. The problem is still open for the

most part. It is closely related to the problem of partial sorting (PSortingn(X,Q)) under

a relation oracle model. In this model we are given a set X of elements and a oracle

Q which is used to determine relations between pairs of elements in X. The goal is to

determine all the valid relations. Given a pair u, v ∈ X the query “Is u ≥ v?” results in

yes, no or incomparable (u ⊥ v). The number of queries made to Q is defined as the query

complexity. Queries are equivalent to comparisons, except here we allow incomparable as a

valid answer. Since there are Ω(2n
2/4) labeled posets with n elements[10], it immediately

follows that query complexity

CC(PSortingn(X,Q)) = Ω(n2)

This has been investigated for width-bounded posets in [11], where the authors show that

if the underlying partial order of X has width at most w then we require at least Ω((w +

log n)n) comparisons. They presented a query optimal algorithm for width-bounded posets

whose total complexity is O(nw2 log n
w). This algorithm can be generalized for any poset

with an additional logw factor multiplied to the comparison complexity. Their results

were the first major extension in this line of research after the seminal work by Faigle and

Turán[12] which only showed the existence of such an algorithm.

Another related problem is the partial order production problem, where given a set T

with an unknown total order we are interested in determining the partial order of another set

S by comparing pairs in T . The goal is do this with the minimum number of comparisons.

The reader is referred to the survey by Cardinal et. al. [13] which discusses some of these

17

and other related problems in detail.

A special case of FSortingWT is the nuts and bolts problem. This is strictly not a sorting

problem rather a matching one.

In this problem one is given two sets of elements, a set of nuts and a set of bolts.

Elements in each set have distinct sizes and for each nut it is guaranteed that there exists a

unique bolt of same size. Matching is performed by comparing a nut with a bolt. However,

pairs of nuts or pairs of bolts cannot be compared. So in this case G = K(N,B) is a

complete bipartite graph with edges from the set of nuts N to the set of bolts B. This

problem has been solved in the mid 1990s [14, 15]. The existence of an O(n log n)-time

deterministic algorithm was proven for it using bipartite expanders [14].

In this work we propose the first non-trivial deterministic algorithm for FSorting. The

results are expressed in terms of n and q. Expressing the results in terms of the number

of missing edges fits naturally with the problem. Note q and w are related, where w is the

width of the poset P found after sorting X. We have,

q ≥ # of incomparable pairs in PG ≥
(
w

2

)

Hence, w = O(
√
q). Here, PG is the partial order obtained after orienting all edges of G

based on the underlying order ofX. We cannot directly compare the comparison model used

here which has only two outcome with the one also allowing incomparability [11]. However

the above relation between w and q gives more context for choosing q as a parameter.

Secondly, in the absence of any other structural properties of the input graph G, q gives a

good indication of how difficult it is to sort G. For example, when q = O(log n), it is easy to

see that one can sort in O(n log n) total time. To do this we pick an arbitrary pair of non-

adjacent vertices and take out one of them, removing it from the graph. We do the same

thing with the remaining graph until the graph remaining is a clique. It is clear that we had

to take out at most O(log n) vertices. Then we sort this graph with O(n log n) comparisons

and merge the vertices we had removed previously by checking all the remaining undirected

18

edges, which is at most O(n log n). On the other extreme, if m =
(
n
2

)
− q = O(n) then it

can be shown that we need to make Ω(m) comparisons. For example in the case of a path

graph Pn, having 2n−1 acyclic orientations, we need at least n− 1 comparisons.

In this chapter and the following we discuss our deterministic algorithm. In chapter

4 we introduce a randomized algorithm. The deterministic algorithm is introduce in two

stages. First we solve a simpler problem where q = O(n). Then we take the main ideas

from this algorithm and generalized for arbitrary q. In this chapter we discuss this special

case.

Theorem 2.2. If q = O(n) then there is a deterministic algorithm for FSorting which

uses o(n2) comparisons and has a total complexity of O(nω).

2.3 Preliminaries

Before we begin with the description of our algorithm we need to introduce some additional

terms. Our input is X and the comparison (cost) graph G(X,E). Elements in Ē are called

forbidden pairs. Initially all edges in G are undirected. Let Gi be the graph after i-edges

have been oriented and Pi be the associated partial order from the transitive closure of the

resulting relations. We denote the degree of a vertex v by d(v) and n(v) = n − 1 − d(v)

is the number of vertices that are not adjacent to v. The set of neighbors of a vertex v is

denoted by N(v). We use the notation E(A,B) to denote the set of edges between the sets

of vertices A,B ⊂ X. We also define the little-o notation to remove any ambiguity from

our exposition.

Definition 2.1. If f(n) ∈ o(g(n)) then f(n) ∈ O(g(n)) but f(n) ̸∈ Ω(g(n)).

Lemma 1. Let {f1(n), f2(n), ..., fk(n)} be a finite set of non-negative monotonically in-

creasing functions such that for some g(n):

1. ∀i fi(n) ∈ o(g(n))

2.
∑

i fi(n) ≤ cg(n)

19

If F (n) =
∑

i f
2
i (n) then F (n) ∈ o(g2(n)).

Proof. First we prove F (n) = O(g(n)). Clearly,

(
∑
i

fi(n))
2 ≤ c2(g(n))2

∑
i

f2
i (n) + 2

∑
i>j

fi(n)fj(n) ≤ c2g2(n)

F (n) ≤ c2(g(n))2

Now we prove F (n) ̸= Ω((g(n))2). Assume that F (n) ∈ Ω((g(n))2); then there exists

some constant ĉ and an integer n1 such that, F (n) ≥ ĉ(g(n))2 whenever n ≥ n1. Now let

fi(n) ≤ cig(n) whenever n ≥ nci . Since fi(n) ∈ o(g(n)), we can pick the ci’s arbitrarily

small and independent of each other. Now, for n ≥ max(n1, n2) (where n2 = maxi(nci)) we

have,

∑
i

f2
i (n) ≥ ĉ(g(n))2

∑
i

c2i ≥ ĉ

This contradicts the fact that ci’s can be assigned arbitrary values independent of each

other. That is, not all fi(n) will satisfy the condition fi(n) ∈ o(g(n)) simultaneously.

Hence, F (n) ̸= Ω((g(n))2).

Lemma 2. Let T (n) =
∑k

i=1 T (ni) + f(n) where
∑

i ni ≤ δn for some 0 < δ < 1 and

f(n) ∈ o(n2). Then T (n) ∈ o(n2).

Proof. Let as assume T (n) = Ω(nα) for some α ≥ 1, otherwise we are done. Since α ≥ 1,

T (n) is convex and it follows that
∑k

i=1 T (ni) ≤ T (
∑k

i=1 ni) = T (δn). So the recurrence

20

becomes T (n) ≤ T (δn)+f(n). Using the “Master theorem” we see that, T (n) = Θ(f(n)) =

o(n2).

2.4 A Deterministic Algorithm When q = O(n)

Here we look at a simpler case. We will use some of the main ideas from this algorithm

to extend it to unknown q. This algorithm will have a comparison complexity worse than

the general version. In this algorithm we shall do case analysis based on whether a certain

quantity is o(n) or not. We acknowledge that this is not an algorithmic test. However, we

use it in this algorithm to establish a framework for the second algorithm, which uses a

traditional test and does not affect the main claims.

2.4.1 Basic Idea

We know that from Turan’s theorem that a graph not having a complete subgraph of size

p must have O(p−2
2(p−1)n

2) edges. Thus if q = O(n) we see that G must have a reasonably

sized clique of Ω(n). A clique can be sorted using any standard comparison based sorting

algorithm. Since q is small, this clique is also well connected to the rest of G. We can use

this fact to partition G in a balanced manner and proceed recursively. The main difficulty

arise from the following two facts: 1) even though many elements can be partitioned some

elements may not be comparable and must be treated separately. 2) the subgraphs formed

after the partition may not have many edges. In the rest of this chapter we show how to

overcome these problems by using a composition of two recursive algorithm. However it

turns out we can avoid this double recursion by doing more work to partition the graph

in the first stage. This is done via the use of multiple cliques and it is the subject of next

chapter.

21

2.4.2 A Restricted Case

Assume q ≤ cn for some constant c. If R = {v ∈ X | n(v) > c1} for some constant c1, then

|R| ≤ (2c/c1)n. This is immediate from the fact that
∑

v n(v) ≤ 2cn. We choose c1 = 4c.

Let S = X \R and G[S] be the induced subgraph generated by S. We have |S| ≥ n/2 and

|R| ≤ n/2 if v ∈ S then n(v) ≤ c1.

Lemma 3. There exists a subset K ⊂ S such that |K| ≥ n
2(4c+1) and G[K] is a complete

graph.

Proof. We construct K explicitly as follows. Pick any arbitrary vertex u in S. Let K = {u}.

Then we pick successive vertices from S iteratively. Let v be the last vertex to be added to

K. Since v has at least |S| − c1 neighbors in S, whenever we pick a neighbor of v from S

to add to K we loose at most c1 + 1 vertices (including the vertex we picked). Hence if we

pick neighbors of v the size of K is at least |S|/(c1 + 1) ≥ n/2(4c+ 1).

Clearly the above procedure runs in O(n2) time and makes no comparisons between elements

of X. From here onwards running time is used synonymously with total complexity. Now

we are ready to describe our algorithm. The main algorithm is recursive. However the

recursion is composed over two separate procedures. We shall break up the algorithm into

several steps.

2.4.3 Initial Sorting

Given the input graph G, construct K ⊂ X, where the induced subgraph G[K] is a clique,

with |K| ≥ n/2(4c + 1) (Lemma 3). Let L = X \K. Note that |L| ≤ n − n/2(4c + 1) =

(8c + 1/8c + 2)n. Next we sort K using O(n log n) comparisons. We can use a standard

comparison based sorting algorithm for this purpose, as G[K] is a clique. Now we have two

possibilities:

22

Case 1: If |L| = o(n), then we probe all edges of G[L] and G[K,L]. Then we take the

transitive closure of the resulting relations for which no extra comparisons are neces-

sary. It can be easily seen that the number of comparisons made is o(n2). For the

sake of contradiction if we assume that it is not so then |K||L| + |L|2/2 ≥ dn2 for

some d. This implies |L| ≥ dn, since |K| + |L|/2 ≤ n. But then, |L| = Ω(n), which

is not true according to our earlier assumption. So, in this case we would have sorted

X by making only o(n2) probes.

Case 2: Otherwise |L| ≥ δn, for some constant δ. In this case we recursively partition L

based on elements from K. We call this the partition step.

2.4.4 Partition Step

We will actually recursively partition both K and L. To keep track of the current partition

depth we rename K to K00 and L to L00. We pick m00 the median of K00 (after K00 is

sorted). Since K00 ⊂ S we have n(m00) ≤ c1. So m00 will be comparable to all but at most

c1 elements of L00. Let

A00 = {v ∈ L00| v ∈ N(m00)}

B00 = L00 \A00

Note |B00| ≤ c1. Let U00 be the subset of A00 whose elements are ≥ m00 and the set R00

accounts for the rest of A00. Let K10 and K11 be the elements of K00 that are < and ≥ to

m00 respectively. We recursively partition the sets U00 and R00 using the medians of K10

and K11. The B-sets are kept for later processing. We rename the sets U00 and R00 to L10

and L11. So, the pairs (K10, L10) and (K11, L11) are processed as above generating the sets

A10, A11, B10 and B11. We continue doing this until the size of the K-set is ≤ c2, where c2

is some constant. At this point we don’t know the size of the L-set paired with it. There

are two cases we need to consider:

23

Case 1 Let |L| = o(n). Then we probe all the edges of G[L] and G[K,L] which uses at

most c2|L|+
(|L|

2

)
number of comparisons.

Case 2 Otherwise |L| ≥ δn, for some constant δ. Hence the graph G[L] can have at most

≤ (c/δ)|L| missing edges. This satisfies our initial premise that the number of missing

edges in G[L] is linear in the number of vertices. Hence we can apply our initial

strategy recursively. That is we first find a large enough clique (which according to

Lemma 3 must exist) and then use it to partition the rest of the set L.

Note that (c/δ) is an absolute constant. If the input graph has at most cn missing

edges we apply the procedure recursively to subgraphs whose number of missing edges

are at most (c/δ) times the number of vertices in the subgraph at any level of recursion.

This (c/δ) factor is not successively multiplied within each level of recursion.

Let us visualize the partitioning using a partial recursion tree T (see Figure 2.1). We

shall call T the “partial recursion tree” for reasons that will soon be clear. At the root we

have the pair (K00, L00). It has two children node (K10, L10) and (K11, L11) each having

two children of their own and so on. Now at each level, the size of the K-set gets halved.

So the number of levels in T is at most O(log n). However, the L-sets need not get divided

in equal proportions. So, at the frontier (the deepest level) we will have nodes of the above

two types, depending on the size of their corresponding L-sets. Let the collection of these

frontier nodes be partitioned in two sets F1 and F2 corresponding to case 1 and case 2

respectively.

Computing comparisons in F1: We can conclude that the total number of probes

needed to compute all relations in F1 is o(n2). This follows from Lemma 1. Here we can

map the size of the L-sets of the nodes in the collection F1 to functions fi(n). We know

that the total elements in the union of these L-sets is ≤ |L00| ≤ 8c+1
8c+2n. The total number

of comparisons will be F (n) in worst case. What is the total number of comparisons on

the internal nodes of T? We know that in the internal nodes we compare the median of

24

U10R10B10

K20 K21

m10

U11R11B11

K22 K23

m11

f f
g f

2 F2 2 F2 2 F2

SORT K00

T

T̂

T
T T

T

T

U00R00B00

K10 K11

m00

L00

L10

L11

Figure 2.1: Visualizing the steps. At the bottom of T the shaded boxes represents the
F1-nodes and the blue rectangles the F2-nodes. The outer dashed triangle represents the

full tree T̂ . The tree T̂ is created during the partitioning step and in the merge step we

start from the deepest leaves of T̂ and move upwards.

the K-set with the elements of the A-set, which takes |A| probes. Since the union of these

A-sets cannot exceed the total number of vertices in G, at each level of T we do at most

O(n) probes, totaling to O(n log n) probes over all the internal nodes.

Computing comparisons in F2: Unlike the nodes in F1, the nodes in F2 recursively

call the “initial strategy” using the input graph G[L]. Let the comparison complexity of

our initial strategy be Q(n). Then the recursion for Q is as follows:

Q(n) =

|F2|∑
i=1

Q(ni) + o(n2)

Here we assume that the nodes in F2 are indexed according to some arbitrary order. We can

25

solve this recurrence using Lemma 2, giving Q(n) ∈ o(n2). This follows from,
∑|F2|

i=1 ni ≤

8c+1
8c+2n. Note here that |F2| is bounded by a constant since the size of the L-sets are ≥ δn.

We call T̂ the full recursion tree. All leaf nodes in T̂ are in F1. It is straightforward

to show that T̂ has O(log2 n) levels. Since any of the leaf nodes of T has |L| ≤ βn (where

β = 8c+1
8c+2), its subtree in T̂ for some constant α can have at most

α log βn = α log n− αβ

levels, and any of its leaves having at most α log n− 2αβ levels, and so on.

2.4.5 Merge Step

Once we have completed building T̂ we proceed with the final stage of our algorithm. Recall

that during the forward partition step we had generated many of these B-sets in the internal

nodes of T̂ . Now we start from the leaves of T̂ and proceed upwards. Each pair of leaf

nodes l and r sharing a common parent p, sends a partial order to it (computed as in

case 1). When we merge these two partial orders we know that no extra comparisons are

needed since they have already been split by the median of the K-set of p. What remains

is to compare all edges between the B-set in p and elements in this newly merged partial

order (which constitutes the set of elements A ∪K of the node p) as well as the edges in

G[B]. Then we pass the resulting partial order to the parent of p, and so on. Since the

size of the B-sets are bounded by c1 (at any level in T̂), total number of comparisons we

make is then ≤ c1
∑

i(|Ai|+ |Ki|+ c1), where sum is taken over all the nodes in that level.

Hence this is bounded by c1n. So at each level we do at most O(n) comparisons in the

backward merging step. Since there are at most O(log2 n) levels, it totals to O(n log2 n)

additional comparisons. Adding this to the comparison cost of partitioning in the forward

step does not effect the total comparison complexity, which was o(n2). The final step is to

compute the transitive closure of the resulting set of relations, which can be done without

26

any additional probing. Since computing the transitive closure is equivalent to boolean

matrix multiplication[16] therefore the total complexity is O(nω). Recall ω ∈ [2, 2.38] is the

exponent in the complexity of matrix multiplication.

27

Chapter 3: Restricted Sorting Continued

In the last chapter we saw how we can use a clique of G to efficiently partially partition

of elements of X. A natural question to ask here is if we can employ multiple cliques at a

time. First, we show that if G has enough edges then we can get a large collection of cliques

that are relatively big. Second, we will show how we can use them to efficiently partition

X.

The sets R and S are defined analogously to last chapter.

R = {v ∈ V | n(v) > c1q/n}

for some constant c1. With c1 = 4, we get |R| ≤ δ1n where δ1 ≤ 2/c1 = 1/2. Hence

|S| ≥ (1 − δ1)n ≥ n/2. Now we will apply Lemma 3 successively to construct a “large-

enough” set K ⊂ S which we will use to find an approximate median of X. The set K

consists of disjoint subsets Ki such that G[Ki] is a clique.

3.1 Constructing the Set K

We construct the first clique K1 ⊂ S using the method detailed in Lemma 3. Let us define

Si = S \
⋃i

j=1Kj . There are two cases:

Case 1: q < n: In this case we have,

|K1| ≥ (n/2)/(c1q/n+ 1) ≥ (n/2)/(c1 + 1) ≥ n/10

We take the first n/10 elements (if K1 turns out to be bigger than n/10) and keep the

rest for the second round. Now we construct the second clique K2 from S1 which has

28

at least 2n/25 vertices. We let K = K1 ∪K2. Hence K has at least 9n/50 vertices.

Case 2: q ≥ n: In this case we have

|K1| ≥ (n/2)/(c1q/n+ 1) = (n2/2)/(4q + n) ≥ n2/10q

Again we take |K1| = (1/10)n2/q discarding some vertices if necessary. Similarly we

construct K2 ⊂ S1. It can be shown that |K2| ≥ (n2/10q)(1 − n/5q) and we keep

(n2/10q)(1 − n/5q) vertices in K2 and the rest are discarded to be processed in the

next round. In general for the clique Kr we have |Kr| ≥ (n2/10q)(1− n/5q)r−1. Now

we let K =
⋃r

i=1Ki. We will show that |K| ≥ δ2n for some constant δ2 > 0. Let

r = 5q/n+ 1. Then we have

|Kr| ≥ (n2/10q)(1− n/5q)r−1 ≥ (n2/10q)(1− n/5q)5q/n > 3n2/100q

since q ≥ n. Hence, |K| =
∑r

i=1 |Ki| ≥ r|Kr| ≥ (9/50)n, giving δ2 = 9/50. Now for

each Ki (1 ≤ i ≤ r) we keep a subset K ′
i of size |Kr| and throw away the rest. Clearly,

for each i, the induced sub-graph G[K ′
i] is also a clique. Let K ′ =

⋃r
i=1K

′
i. We also

have |K ′| ≥ (9/50)n.

3.1.1 Computing An Approximate Median Of X

We shall compute an approximate median with respect to all the vertices of G (the set X)

and not just the set S. This element divides the set X in constant proportions. We do this

using the cliques in K ′. For each K ′
i we find its median using Θ(|K ′

i|) probes since G[K ′
i]

is a complete graph. Let this median be mi and M be the set of these r medians. Since

mi ∈ S, n(mi) ≤ 4q/n. We define the upper set of m ∈M with respect to a set A ⊂ X (m

29

may not be a member of A) as

U(m,A) = {a ∈ A | a ≥ m}

Similarly we define the lower set

L(m,A) = {a ∈ A | a < m}

The sets U(m,K ′) and L(m,K ′) need to be determined. However, mmay not be a neighbors

of all the elements in K ′. So we compute the upper and lower set approximately by probing

all the edges in E({m},K ′ \ {m}). These sets are denoted by Ũ(m,K ′) and L̃(m,K ′)

respectively. There exists some m ∈ M which divides K ′ into sets of roughly equal sizes

(their sizes are a constant factor of each other); in fact the median of M is such an element.

However the elements in M may not be a clique. Hence we will approximate m using the

ranks of the elements in M with respect to the set K ′ (which is |L̃(m,K ′)|). Let m∗ be

picked using the above procedure. Next we prove that the element m∗ is an approximate

median of M . It is also an approximate median of K ′.

Lemma 4. The element m∗ picked as described above is an approximate median of K ′, for

n2 ≥ 200q.

Proof. First we show that the median of M is an approximate median of K ′. Let us take

the elements in M in sorted order (m1, ...,mr), so the median of M is m⌊r/2⌋. Now

|L(m⌊r/2⌋,K
′)| ≥

∣∣∣∣∣∣
⌊r/2⌋⋃
i=1

L(mi,Ki)

∣∣∣∣∣∣
Since the sets Ki are disjoint and |L(mi,K

′
i)| ≥ |Kr|/2, we have (ignoring the floor)

|L(m⌊r/2⌋,K
′)| ≥ |Kr|r/4

30

Similarly we can show that |U(m⌊r/2⌋,K
′)| ≥ |Kr|r/4. Hence m⌊r/2⌋ is an approximate

median of K ′. Now we show that

| |L(m∗,K ′)| − |L(m⌊r/2⌋,K
′)| |< 4q/n

Consider the sorted order of elements in M according to |L̃(m∗,K ′)|. Since each m ∈ M

has at most 4q/n missing neighbors in Y , we have | |L̃(m,K ′)| − |L(m,K ′)| |< 4q/n. So

the rank of an element in the sorted order is at most 4q/n less than its actual rank. Thus

an element m∗ picked as the median of M using its approximate rank |L̃(m,K ′)| cannot be

more than 4q/n apart from m⌊r/2⌋ in the sorted order of K ′. Hence

|L(m∗,K ′)| ≥ |Kr|r/4− 4q/n ≥ 9n/200− 4q/n ≥ n/40 (3.1)

whenever n2 ≥ 200q. In an identical manner we can show that |U(m∗,K ′)| ≥ n/40. Hence,

m∗ is an approximate median of K ′. When q < n we just take m∗ as the median with the

higher |L̃(·,K ′)| value, which guarantees |L(m∗,K ′)| ≥ n/40 whenever n2 ≥ 800q/13. So

we take n2 ≥ 200q to cover both the cases.

It immediately follows that m∗ is also an approximate median of X with both |L(m∗, X)|

and |U(m∗, X)| are lower bounded by n/40. Lastly, we note that the above process of

computing an approximate median makes Θ(q + n) comparisons. This follows from the

fact that computing the medians requires Θ(n) comparisons in total and for each of the

≤ 5q/n+ 1 medians we make O(n) probes.

3.1.2 A Divide-and-Conquer Approach

Now that we have computed an approximate median of X we proceed with a recursive

approach. Let m∗ be the approximate median. As with our algorithm in the previous

31

chapter we partition X into three sets U , L and B. The U and L are the upper and lower

sets with respect to m∗. B is the set of vertices that do not fall into either, because they

are not neighbors of m∗. Since m∗ ∈ S we have |B| ≤ 4q/n. We recursively proceed to

partially sort the sets U and L with the corresponding graphs G[U] and G[L] and keep B

for later processing (as we did in the merging step previously). Like before we can imagine

a recursion tree T . Let ĒP be the set of forbidden edges in G[P], the graph corresponding

to some node in the recursion tree T . We take nP = |P | and qP = |ĒP |.

Case 1: When n2
P ≥ 200qP we recursively sort P . In this case we can guarantee that the

approximate median m∗
P of P will satisfy equation (3.1). That is both |L(m∗

P , P)|

and |U(m∗
P , P)| is ≥ nP /40.

Case 2: Otherwise we compare all edges in G[P]. In this case P will become a leaf node

in T .

It can be seen that the depth of the recursion tree is bounded by O(log n). At each internal

node P of T we pass sets of constant proportions (where the size of the larger of the two

set is upper bounded by (39/40)nP) to its children nodes.

3.1.3 Merge Step

In this step we start with the leaves of T and proceed upwards. A parent node P gets

two partial orders from its left and right children respectively. Then it probes all the edges

between its B-set and these partial orders to generate a new partial order and pass it on

to its own parent. This step works exactly as the “merge step” of the previous algorithm.

The only difference is that the B-sets here may not be of constant size but of size ≤ 4q/n.

3.1.4 Comparison Complexity

We can determine the comparisons complexity by looking at the recursion tree T . First

we determine the complexity of the forward partition step. At each internal node of T we

32

compute a set of medians and pick an appropriate element from it. Then we partition the

set of elements at the node by comparing all edges between the selected element and rest of

the elements in the node. As mentioned before, this only takes Θ(qP +nP) comparisons for

some internal node P . We assume that all the leaves of T are at the same depth, otherwise

we can insert internal dummy nodes and make it so. Nodes that are in the same level are

vertex disjoint, hence the total sum of all the vertices in these nodes are ≤ n. Similarly,

the total number of the forbidden edges is ≤ q. Hence we perform O(q+n) comparisons at

any internal level of T . With O(log n) internal levels in T the number of comparisons made

is ((q + n) log n) during the forward partition step. If P is a leaf node then we compare all

edges in G[P]. There are at most
(
nP
2

)
−qP edges in G[P]. Since P is a leaf node, according

case 2, n2
P < 200qP . Hence we make

(
nP
2

)
−qP = O(qP) comparisons. Aggregating this over

all the leaves gives a total of O(q) comparisons. Thus total number of comparisons made

during the forward step is O((q + n) log n).

Now we analyze at the merging step. Merging happens only at the internal nodes. Look

at an arbitrary internal level of T . At each node P of this level we compare all the edges

in E(BP , UP ∪LP ∪m∗
P) and in G[BP]. We do not have to make any comparisons between

U and L as they were already separated by the approximate median m∗
P . Hence the total

number of comparisons made in this node is

≤ (|UP |+ |LP |+ |BP |+ 1)|BP | ≤ (nP)(4qP /nP) ≤ 4qP

Summing over all the nodes at any given level gives us O(q) as the comparison complexity

per level. So the total number of comparisons during the merging stage is O(q log n).

Combining the two halves, partition step and merge step, we see that the total number

comparisons needed to (partially) sort X is O((q + n) log n).

33

Total Complexity

Now we look at the total complexity of the previous procedure. Again the analysis is

divided into the partition step and the merge step. During the partition step at each node

P we perform O(n2
P) operations. This includes computing the degrees, finding the cliques,

computing the approximate median. So at any level of T , whether it is an internal level

or not, we perform O(n2) operations. Hence, in total O(n2 log n) operations are executed

in the partition step. However this is a conservative estimate and we can remove the log n

factor as argued below: we can define the recurrence for the forward computation as,

T (n) =


T (n/40) + T (39n/40) +O(n2) if n2 ≥ 200q

O(q) otherwise

(3.2)

This follows from the previous discussion. If we don’t recurse on a node we guarantee

that n2
P < 200qp for that node. Hence, we have T (n) = O(n2 + q) using the Akra-Bazzi

method[17]. In the merge step, we only make O(qP) comparisons at any given node. We

compute transitive closures only at the leaves. However for any leaf P we have n2
P < 200qP .

Hence computing the transitive closure of G[P] takes O(q
ω/2
P) time using the boolean matrix

multiplication method. Hence, the total complexity of the above procedure is O(n2+ qω/2).

We summarize the results of this chapter with the following theorem:

Theorem 3.1. Given a set X with n elements and a graph G on X having q missing edges,

one can partially sort X with O((q + n) log n) comparisons and in total O(n2 + qω/2) time.

Proof. Follows from the preceding discussions.

34

Chapter 4: Restricted Comparison Model Under

Randomization

So far we have discussed CBPs only in terms of deterministic algorithms. In this chapter

we look at randomized algorithms. Let us start with some definitions. We also introduce

randomized algorithms using comparison trees. For some comparison-based problem P

let AP be the set of all comparison trees (as defined in Chapter 1) that solves P. Then

a randomized algorithm A for P is determined by a probability distribution D over the

collection AP. That is, given some input of P, the algorithm A picks a comparison tree T

with probability ProbD[T] according to the distribution D and proceeds to solve P for that

input using the selected tree.

Definition 4.1. The randomized comparison complexity R(P) is defined to be the expected

number of comparisons required by a randomized comparison based algorithm (RCBA)

which uses the optimal probability distribution over the collection AP.

However the above definition does not necessarily give us a procedure for computing

randomized comparison complexity. Let IP be the collection of all input instances of P. We

can use Yao’s minimax principle[18] to determine the randomized comparison complexity:

Theorem 4.1. (Minimax) For some arbitrary probability distribution DI over I, R(P) is at

least the expected number of comparison required by any optimal deterministic algorithm

that solves P when the input is chosen according to DI.

We can choose the distributionDI ourselves, however, the deterministic algorithm whose

expected runtime we are planning on computing has access to this distribution in advance.

We can also express this principle using the comparison tree paradigm. Let T be a com-

parison tree that solves P. Let I ∈ IP chosen according to DI and pI be the path in T

35

that corresponds to the sequence of comparisons. Here the path pI is a random variable

and its expected value is the number of comparisons needed on average to solve P using

T . So one way to determine randomized comparison complexity is to choose an optimal

comparison tree whose leaves are all at some depth f(n), only dependent on the size of the

input n. Then we can choose DI as the uniform distribution and get a lower bound of f(n)

for the average case complexity for randomized algorithms. However many CBPs do not

have optimal comparison trees whose depth only depend on the size of the input. In fact

for many CBPs we do not yet know an optimal comparison tree. One classical example is

the Minimum Spanning Forest problem. For these cases we cannot use the above method

effectively.

Just like we expressed randomized algorithms with comparison trees we can also discuss

them using Pointer Machines. The only difference is that we work with a probability

distribution over the Pointer Machines solving P. Thus most of the concepts we introduce

carry earlier over in to the randomized setting.

For randomized algorithms there are two ways to qualify the complexity results. One

is using expectations and the other is with high probability. We say that an algorithm

makes at most f(n) number of comparisons with high probability if the probability that

the number of comparisons made is greater than f(n) for some input is o(1). That is, the

probability tends to 0 as n tends to infinity. However this is generally a weaker guarantee

than saying the algorithm makes f(n) comparisons in expectation. Using Chernoff bounds

we can show that the latter implies the former. However, it is not always possible to express

results in terms of expectations.

4.1 Restricted Sorting With Randomization

In the context of randomized algorithms, this problem has been studied in [19, 20]. The

authors in [19] proposed a randomized algorithm that sorts G with a probe complexity of

Õ(n3/2) with high probability. However their implementation uses a sub-routine that is a

36

polynomial time uniform sampling algorithm to sample points from a convex polytope[21].

The authors did not discuss the exact bound for the total time complexity in their paper.

Briefly, their algorithm works as follows. At each step the algorithm either finds a edge

which is a balancing pair or finds a subset of elements that can be sorted quickly. Their

algorithm relies on an extension of the balancing pair results on posets, where they show,

a pair can be balancing even if their average over the linear extensions is more than 1

but bounded by some constant. They use a randomized sampling scheme to sample from

the convex polytope of the currently known partial order to estimate the average rank of

elements over the set of all linear extension and use it to determine a balancing pair.

In this section we give the following results. First, a randomized algorithm which sorts

X with O(n2/
√
n+ q + n

√
q) comparisons with high probability. We use a random graph

model for this purpose. The main feature of our randomized algorithm is that it does not

need the expensive subroutine to sample points from a convex polytopes. This reduces the

total complexity for our algorithm. The second result is specific to random graphs. If G

is a random graph with edge probability p (that is an edge is present with probability p

independent of other edges) we show that one can sort G with high probability using only

Õ(min (n3/2, pn2)) comparisons. These are discussed in the following sections.

4.2 A Randomized Algorithm

In this section we look at a more direct way of sorting by making random comparisons.

The proposed method is inspired by the literature on two-step oblivious parallel sorting

algorithms [22,23]. In particular Bollobás and Brightwell showed certain sparse graphs can

be used to construct efficient sorting networks [24, 25]. Oblivious sorting algorithms are

discussed in detail in the second part of this thesis, but, for our discussion here the reader

does not need to know any terminology about these algorithms. It was shown that if a graph

satisfies certain properties then comparing its edges and taking the transitive closure of the

resulting relation set would yield a large number of additional relations. Then we just probe

37

the remaining edges that are not oriented, which is guaranteed (with high probability) to

be a “small” set.

The main idea is as follows: Let Hn be a collection of undirected graphs on n vertices

having certain properties. An acyclic orientation of a graph H(X,E) ∈ Hn is an ordering

of V and the induced orientation of the edges of H based on that ordering. Let σ be a total

ordering on X and P(H,σ) be the partial order generated by this ordering σ on H. It is a

partial order since H may not be sortable. Let t(P) be the number of incomparable pairs

in P. We want H to be such that t(p) is small. If that is the case then P will have many

relations and if H is sparse then we can compare all the edges of H and afterwards we will be

left with comparing only a small number of pairs. These are pairs which were not oriented

during the first round of comparisons and after the transitive closure computation. A graph

H is useful for our purpose if every acyclic orientation of H results in many relations. We

want to find a collection Hn such that every graph in it is useful with high probability.

We extend the results in [24,25] to show that a collection of certain conditional random

graphs are useful, with high probability. In our case this random graph will be a spanning

subgraph of the input graph G. Here we recall an important result from [24] (Theorem 7)

which we will use in our proof.

Theorem 4.2 ([24]). If G is any graph on n vertices and G satisfies the following property:

Q1 Any two subsets A,B of vertices having size l have at least one edge between them.

Then the number of incomparable pairs in P(G, σ) is O(nl log l) for any ordering σ of X.

The input graph G is chosen by our adversary. However, we show that any random spanning

subgraph of G with an appropriate edge probability will satisfy Q1 with high probability.

Let Hn,p(G) be a random spanning subgraph of G, where Hn,p(G) has the same vertex

set as G and a pair of vertices in Hn,p(G) has an edge between them with probability p

if they are adjacent in G, otherwise they are also non-adjacent in Hn,p(G). All we need

to prove is that any random spanning subgraph Hn,p(G) given G with n-vertices and edge

probability p will satisfy Q1 with high probability. Since G has at most q forbidden edges

38

any two subsets of vertices A,B (not necessarily distinct) of size l must have at least
(
l
2

)
−q

edge between them. Let EAB be the event that the pair (A,B) is bad (they have no edges

between them), then the probability Sn,p that there exists a bad pair is:

Sn,p := Prob

⋃
i,j

EAiBj

 ≤∑
i,j

Prob(EAiBj) ≤
∑
i,j

(1− p)e(Ai,Bj) (4.1)

where the sum is taken over all such
(
n
l

)2
pairs of subsets, and the number of edges between

the two sets A and B in G is e(A,B) ≥
(
l
2

)
− q. So we have,

Sn,p ≤
(
n

l

)2

(1− p)(
l
2)−q ≤

(
n

l

)2

e−p((l2)−q)

≤
(en

l

)2l
e−p((l2)−q) = exp(2l(log en/l)− p(

(
l

2

)
− q))

Since, e−x ≥ 1− x. Hence Sn,p → 0 as n→∞ whenever

exp(2l(log en/l)− p(

(
l

2

)
− q)) = o(1) (4.2)

Given q <
(
n
2

)
it is always possible to find appropriate values for p and l as functions

of q and n such that Sn,p = o(1). For some value for the pair (p, l), we see that in the

first round we make O(pn2) comparisons with high probability and in the second round

O(nl log l) comparisons (for the remaining unoriented edges) again with high probability.

So the comparisons complexity is Õ(pn2+nl). We can choose appropriate values of p, l which

satisfy equation 4.2 such that the comparison complexity becomes Õ(n2/
√
q + n + n

√
q).

We summarize this section with the following theorem:

Theorem 4.3. Given a graph G on n vertices and q forbidden edges one can determine the

39

partial order on G with high probability in two steps by probing only Õ(n2/
√
q + n+n

√
q)

edges in total and in O(nω) time.

Proof. Follows from the preceding discussions and the O(nω) total complexity is due to

taking the transitive closure.

4.3 When G Is A Random Graph

The above technique can easily be extended for the case when the input graph G is random.

Let Gn,p be the input graph having n vertices and an uniform edge probability p. For such

a graph we can use equation 4.1 to bound Sn,p as follows:

Sn,p ≤
(
n

l

)2

(1− p)l
2 ≤ exp(−pl2 + 2l log n)

We can choose any l > 2 log n/p such that Sn,p → 0 as n→∞. Let l = 3 log n/p. Using

Theorem 4.3 we have t(Gn,p) = Õ(nl) = Õ(n/p). Since Gn,p has pn2/2 edges (with high

probability) the critical value of p when t(Gn,p) = pn2/2 is Õ(1/
√
n). Let this be p̂. Hence if

p > p̂, we can sort by making only Õ(n3/2) comparisons. Since given Gn,p we can construct

an induced subgraph Gn,p̂ and use it as the random graph in our previous construction.

Otherwise we just probe all the edges which makes O(pn2) comparisons. Thus we can sort

Gn,p with at most Õ(min (n3/2, pn2)) comparisons with high probability. Hence, we get

an elementary technique to sort a random graph with at most Õ(n3/2) comparisons. The

algorithm in [19] has a slightly better bound of Õ(n7/5) comparisons. However, the total

runtime of the algorithm in [19] is only polynomially bounded when p is small. In our

algorithm we need compute the transitive closure only twice making it run in O(nω) total

time.

40

Chapter 5: Set Maxima

In the last few chapters we looked at the problem of sorting when some comparisons are

forbidden. However, we did not have any additional structures along with the input set X

that determined the relations we needed to compute. The comparison graph G seemed like

this additional structure, but its purpose was only to specify what relations we can compute.

In this chapter we look at a CBP where comparison costs are uniform but an additional

structure is given in the form of a hypergraph which determines the type of relations we

have to compute.

The Set Maxima problem was first introduced in [26], in the context of finding lower

bounds for shortest path problems. It was shown at the time that the comparison tree

complexity of the problem was weak. The general problem still remains unsolved and

along with the Minimum Spanning Forest problem, is one of the outstanding problems in

computer science.

5.0.1 Background

We begin by formally introducing the problem and some necessary notations. As before, X

will be a set of n elements. The set Q contains all total orderings of X. Here we do not have

any restriction on comparing certain pairs of X, so we can always determine the underlying

total order if necessary. Let S be a collection of m distinct subsets of X. The sets in the

collection are labeled from 1 to m and let Si be the set with labeled i. Let
∑m

i=1 |Si| = p.

This is the input size of our problem. The Set Maxima problem (SetMaximan,m(X,S)) asks

to determine the maximum of each of the sets in the collection. Specifically we are interested

in determining the number of comparisons necessary and sufficient to solve the problem.

We will use the Pointer Machine model here. So only comparisons between pairs of elements

41

are counted towards the comparison complexity. Like before we distinguish it from other

memory-type operations such as set memberships, computing the union / intersections of

the sets etc. They are taken into account only when determining the total complexity.

The best known lower bound for the problem under the comparison tree model is no

better than the trivial bound of O(m+ n). This was shown in [26] using the s-uniqueness

property. The original proof was given by Michael Fredman. The best upper bound for the

problem is a combination of several trivial upper bounds and is summarized as O(min(n+

m2m, n log n)). The first term is the results of the following procedure: the sets in the

collection S can be represented by 2m − 1 (possibly empty) pairwise disjoint sets S′. For

example if m = 2 we can take S′ as the following three sets S′
1 = S1 \ S2, S

′
2 = S2 \ S1 and

S′
3 = S1 ∩ S2. Once we have computed the maximum for each set in S′ it takes at most

2m−1 comparisons per set in S to determine its maxima. The n log n term comes from the

following simple observation: If we sort the set X then without any further comparisons

we can determine the maximum of each set by simply iterating over the sorted list from

largest to smallest and doing membership queries. In the next section we briefly go over

some non-trivial results for certain special cases of the set maxima problem, but first we

define the SetMaximan,m(X,S) formally:

Definition 5.1. Given an set X = {x1, ..., xn} with an unknown total order and a collection

of subsets S (|S| = m) of X the SetMaxima problem asks how to determine the maximum

element of each of the subsets of S in O(n+m) comparisons, if possible.

Note that we do not use the input size p as one of our output parameters, which could

possibly be exponential. This follows from the fact that we are only interested in counting

comparisons and operations like reading the input, testing set membership could be said to

be “free”.

42

5.1 Previous and Related Work

In the context of lower bounds, Graham and others investigated the comparison complexity

of the set maxima problem [26]. They showed that the number of different arrangements

(of maximum elements) given a pair (X,S) is
(
m+n−1
n−1

)
< 2m+n. This gives a Ω(n + m)

lower bound. A tighter analysis of the quantity log(
(
m+n−1
n−1

)
) gives Ω(n log(1 + m/n)) as

the lower bound. The proof is based on the notion of s-uniqueness and list representatives

which they introduced in the paper.

There have been four major results for the set maxima problem. We start with the

randomized algorithm proposed in [27]. The main idea behind their algorithm is to: 1)

choose a random sample of elements (say R),2) sort this set, 3) Use this set to compute the

reduced sets S′
i such that S′

i ⊂ Si (where elements of S′
i are greater than all elements in

R that are also in Si), 4) solve the set maxima problem on the reduced sets. The critical

task is to compute the reduced sets efficiently in expectation. They show that the expected

number of comparisons in their algorithm isO(n log ((m+ n)/n)) which is optimal according

to the comparison tree complexity. In fact, the randomized algorithm solves a more general

problem of computing the t-maxima, that is, for each subset Si ∈ S it determines its largest

t elements. As we shall see shortly this randomized algorithm borrows concepts from a

deterministic algorithm proposed in [28].

Moving on to deterministic algorithms, we first discuss the generic algorithm proposed in

[28] and then show how it was applied to solve the set maxima problem when the elements

of X are vectors and elements of S are hyperplanes. The pseudo-code of the generic

RankSequence algorithm 1 is given above. The rank sequence R is determined based on the

properties of the subset system. It is easy to see that once the rank sequence is computed

determining the maximum for each sets s′j , which are called the reduced sets, can be done

in time linear in the size of the sets. Therefore, the complexity of the generic RankSequence

43

is:

T (n,m) = fr(n,m) +
m∑
j=1

|s′j | (5.1)

The term fr(n,m) is the complexity of computing the rank sequence. Note that line 4 does

not require any additional comparisons. The second term accounts for the work done on

line 5 where we compute the maxima for each set by brute force. It was shown that when

the sets are determined by hyperplanes, with m = n, then T (n,m) is linear. This was

proved using the fact that number of hyperplanes a point can belong to is limited. We can

choose a rank sequence based on this fact that can be computed in linear time. They go

on to show that when the set memberships are random we can also solve set maxima with

linear number of comparisons with high probability. By random set membership we mean:

the probability that xi ∈ sj is p for all set-element pairs. It can also viewed as a random

hypergraph with m edges.

Algorithm 1: The Generic RankSequence Algorithm [28]

Input : X,S

Output: (xj1 , ..., xjm), where xjl = max sj

1 R← (r0, r1, ..., rk+1) ; // Integers such that r0 = n > r1 > ... > rk+1 = 1

2 Compute Z = (z0, z1, ..., zk) such that zi is the element in X whose rank is ri

3 Let

Z0 = {x ∈ X| x ≤ z0}

Zi = {x ∈ X| zi ≤ x ≤ zi+1}

Zk = {x ∈ X| x > zk}

4 For all 1 ≤ j ≤ m let s′j = sj ∩ Zl(Sj) where l(Sj) is the largest index i such that

Sj ∩ Zi ̸= ∅

5 Compute the maxima for each s′j .

However, the rank-sequence algorithm is no better than the trivial algorithm (where we

44

sort all the elements) in the worst case. It was shown in [29] that for some collection of

subsets there does not exist any good rank sequence for which both the sequence and the

reduced sets can be computed in linear number of comparisons.

Prior to this, Komlos [30] proposed a special algorithm for the set maxima problem

when X is a set of edges in a tree and the collection S consists of subsets of edges that join

two non-adjacent vertices in the tree. The original motivation for this special case was to

solve the minimum spanning tree (MST) verification problem. (Given an undirected edge-

weighted graph G and a candidate tree T , the MST verification problem asks if T is an MST

for G. Using the fact that edges in T cannot be the maximum weighted edge on any cycle in

G, we immediately see the reduction to the set maxima problem as stated above.) We see

that this special case of the set maxima problem sits at the opposite end of the spectrum

to the hyperplane maxima problem according to how their subset structures differ. In this

problem the size of subsets can vary between 2 to n−1 and they have large overlaps (can be

O(n)) which is in contrast to the hyperplane subset structure, where overlaps are bounded.

However, Komlos showed that this special case can be solved in linear time (in fact he showed

that only 5n + n log |S|+n
n comparisons suffice) on a pointer machine. Since, |S| = O(|E|)

we see that MST verification can be done in O
(
n log |S|+n

n +m
)
comparisons. The main

idea behind Komlos’ algorithm is to convert T into a rooted directed tree by picking any

node and making it the root. Any two non-adjacent node in the tree are joined via two

directed half-paths. It was shown how the maxima of these half paths can be computed

efficiently and maintained such that the maxima for any path in the tree (determined by

two nodes)can be answered quickly.

Liberatore [31] showed that both of the above cases can be generalized using weighted

binary matroids. First we have to introduce some basic notions related to matroids. There

are several ways to define matroids but the definition with independent sets will suffice.

Definition 5.2 (Matroid). A matroid M is a pair (X, I) of a set X and a collection of

subsets I of X such that the following holds:

45

1. ∅ ∈ I

2. If A ⊂ B and B ∈ I then A ∈ I.

3. If A,B ∈ I and |A| < |B| then ∃e ∈ B such that A ∪ e ∈ I.

The sets in I are called independent sets. A set that is not independent is called dependent.

An independent set is maximal if adding any more element to it makes it a dependent set

and the set of all maximal independent sets is called the set of bases of M and is denoted

by BM. Similarly we can define minimal dependent sets called circuits or cycles of M. The

rank function r : 2X → [|X| − 1] is defined for any subset A of X as the cardinality of

the largest independent set contained in A. Hence r(X) is simply the size of a basis in M.

Subsets of X that have a rank one less than X are called hyperplanes of M. A weighted

matroid is any matroid with an weight function on its elements. Given a basis B ∈ BM

and an element e ∈ E \B, there is an unique circuit CB(e) that is contained in B∪ e, called

the fundamental circuit of e with respect to B.

Let PB(e) = CB(e)\e be the fundamental path of e with respect to B. Let A be a matrix

of size m×n over some field GFq
1. Columns of A can be thought of as vectors in GFm

k . The

collection of independent column vectors forms the independent sets of a matroid MA. Such

a matroid is said to be represented by A. If some matroid has a representation matrix over

GF2 then it is said to be a binary matroid. Moreover if A is a totally unimodular matrix then

MA is said to be regular. An unimodular matrix is an integer matrix whose determinant

is either 1 or −1. A matrix is totally unimodular is every non-singular submatrix is also

unimodular. The dual of a matroid M, denoted by M∗ is the matroid which has the same

element set as M and its bases are exactly the complements of the bases of M.

One of the canonical examples of matroids is the graphic matroid. Given a graph

G(V,E), the graphic matroid MG has element set E and any subset of edges in E that

induces a tree in G is an independent set of MG. Hence the MST verification problem

1Where GFq is the Galois field of order q.

46

reduces to finding maxPT (e) for every non adjacent edge of the candidate tree T . Gen-

eralized to binary matroids (since graphic matroids are also regular) this has been termed

by Liberatore as the fundamental path maxima (FPM) problem over such matroids. A co-

graphic matroid is a dual of a graphic matroid. For a cographic matroid the FPM can be

solved in O((m + n) log∗ n) [32]. Liberatore generalized these results to a restricted class

of matroids that can be constructed via direct-sums, 2-sums and 3-sums 2 and gave a

O(min((m + n) log∗(m + n), n log n)) deterministic algorithm [31]. However, this kind of

decomposition is only possible for regular binary matroids and its not clear how to extend

them to a larger class of binary matroids. Note that a regular matroid can be represented

over all fields, thus also over GF2 as well. Hence it is a subset of binary matroids.

5.1.1 Our Result

We see that only for a few special cases of SetMaxima does a non-trivial result exist. This

motivated us to search for a new non-trivial set system for which the set-maxima is linear

time solvable. In this context we look at a geometric setting 3.

In our formulation elements of X are points on a plane and the sets are convex polygons

with a bounded number of sides. Additionally, each point has a weight associated with them.

We show that the set-maxima problem for this set-system can be solved with O(n + m)

number of comparisons.

5.2 A Generic Formulation

We first create a general framework for solving set-maxima based on the structure of the

set-intersection lattice. This will later help us when solving for the convex set system. One

drawback of this generic formulation is that it does not account for transitivity; thus it is

oblivious. So the set of comparisons determined by the intersection lattice is only dependent

2Properly defining this class requires a lot of technical terminology which we did not cover here.
3The earlier formulation by [28] for the projective geometry case is only based on the t-design structure

of the set-system and does not use any geometric arguments.

47

on the set system and not on the results of prior comparisons. However, for the geometric

case we can still derive a non-trivial bound with only the knowledge of the subset structure.

Let the sets in S be labeled from 1 to m and Si be the set labeled i, where each Si is a

subset of X. S can be thought of as a hypergraph on vertex set X. We define a modified

set intersection lattice L for the collection S. Each node of the lattice is a subset of [1 . . .m]

(index sets). For the index set I, let ϕI be a node in the lattice. Recall that normally the

set-intersection lattice has m layers and the top layer represents the empty set, which is

discarded in L. The kth layer contains sets I ⊂ [1 . . .m] whose cardinality is k. The bottom

layer corresponds to [1 . . .m]. We treat the topmost layer in a special manner. Since, the

index sets for this layer are just singletons, we directly use the sets in S to represent the

corresponding nodes. That is we use the set Si to denote the node ϕ{i}.

Each node ϕI stores some subset ofX (possibly empty) and they form a disjoint partition

of X. An element x which is stored in ϕI has the following two properties:

1) x ∈
⋂

i∈I Si

2) For all J ⊃ I, x ̸∈
⋂

i∈J Si.

Since ϕI ’s form a disjoint partition of X, number of non-empty ϕI ’s is bounded by n.

Although the size of L could possibly be exponential in n, henceforth we will only be using

the linear number of nodes that have a non-empty ϕI . As mentioned earlier we treat the

nodes ϕ{i}’s differently and keep them in L even if they are empty. So we can compute and

maintain the pruned L′ in O(m+ n) space and O(p) time respectively without making any

key comparisons. Further we can compute parent relations in the new pruned lattice; if a

path from node ϕI down to ϕJ exists in the original lattice (so I ⊂ J) and now only nodes

ϕI and ϕJ from that path exist then node ϕI is the parent of ϕJ . L′ consists of all ϕ{i}’s

and any other ϕI ’s which are non-empty. Let I be the collection of all index sets of L′.

The following proposition shows that we can further assume that each ϕI ’s has exactly one

element.

Proposition 1. If any ϕI has more than one element then we can reduce the set maxima

48

problem to an equivalent one using only O(n) number of extra comparisons, such that each

ϕI has at most 1 element.

Proof. Since ϕI ’s form a disjoint partition of X we can compute the maxima of every ϕI , if

it contains more than one element, using a total of O(n) number of comparisons.

The cover CI for each non-empty ϕI is defined as the set of all the parents of ϕI in the

pruned lattice L′. A cover-set ζI ⊆ CI of ϕI contains a collection of parents of ϕI such that

the following holds:

I ⊆
⋃

ϕJ∈ζI

J

Let ζ∗I be a cover-set of ϕI of minimum size.

Theorem 5.1. We can solve set maxima with O(
∑

I∈I |ζ∗I |) comparisons.

Proof. We start at the bottom and work our way up the lattice L′, For each node ϕI we

compare the element in ϕI with the element in ϕJ for each ϕJ ∈ ζ∗I ; the larger element

is retained in ϕJ . If ϕJ is empty then no comparison is performed and we simply “copy”

element into ϕJ . If two or more nodes are covered by one parent node then, in turn, several

compare-and-replace operations will be done on the parent node. It is clear by an inductive

argument that each node ϕI will learn (via information passed up from its children) the true

maximum of the intersection it represents; hence each node ϕ{i} corresponding to a sets of

S will be solved. Clearly each element is involved in ≤ |ζ∗I | comparisons, which proves the

theorem.

5.3 Convex Set-System

Elements of X are points on a plane; associated with X is a key value (the “element” in the

original formulation). The sets of S are now constrained to be convex polygons. The points

that are in Si are specified as all the points inside a given convex polygon Pi. We make the

following restrictions: 1) The number of sides of each polygon is bounded by a constant, k,

49

2) no points lie on an edge or on a vertex of a polygon. (In fact without these restriction on

the polygons, it is possible to represent any arbitrary set system in this geometric setting.

This follows easily. Take all the points of X to be on a circle. Then any subset of points

are the corners of a convex polygon.) Hence, the above restrictions allow the geometry to

play a role.

We present our result in terms of the parameter k. Specifically, we show that we can

determine all the maximum for every convex polygons using only O(m+ n) total key com-

parisons. Note that we do not assume any bound on the number of points that can be inside

a convex polygon. The algorithmic framework is the same as the framework of section 5.2.

Again we will use a lattice but with convex polygons associated with each node. The re-

quired nodes (in the pruned lattice) will be associated with each Pi and its convex hull. The

other nodes correspond to various non-empty intersections of polygons. Let QI =
⋂

j∈I Pj .

All polygons below will be convex. Let ϕI be the set of points from X in QI not found in

a QJ where I ⊂ J .

As before a node of the pruned lattice is either (1) one that correspond to a Pi, (2) or

contains at least one point from X. We define a cover-set for the convex regions analogous

to the general case. If ζI = {QI1 , QI2 , . . . , QIq} is a cover-set for polygon R then: 1) QIi ⊃ R

for all i, 2) the region Qi ∩Qj \R is empty (has no points) for all i and j, 3) I ⊂
⋃

i Ii and

4) q is minimum among all such sets.

The rest of the algorithm is analogous to the non-geometric case. The number of nodes

in the pruned lattice is linear O(n+m). Again we reduce each ϕI to at most one point. It is

still true the total number of comparisons depends on the sum of the size of the cover-sets,

for the same reasons. The only thing that remains is to bound the quantity
∑

I∈I |ζI |.

Assume R ⊂ P . Let cP,R be a polygonal chain of successive edges of R which are not

(part of) some edge of P . In Figure 5.1 we see two such polygonal chains. An upper chain

cP,R1
= (e1, e2) and a lower chain cP,R2

= (e4, e5, e6, e7). Let CP,R be the set of all such

chains formed by the intersection of P and R. Note that e8 ⊂ f1 and e3 ⊂ f3 are not

50

R

P

e1
e2

e3
e4

e5e6

e7

e8

f1

f3

f2

f4
f5

f6

Figure 5.1: Polygonal chains.

part of any chain. If we treat a chain as a set consisting of edges, then we can perform set

operations on two of such chains.

P

R Q

S

Figure 5.2: A case where P and Q are not covers of R.

Observation 5.2. If P,Q are in the cover-set of R then for any two chains c ∈ CP,R and

c′ ∈ CQ,R, c ∩ c′ = ∅. If P is in the cover-set of R then |CP,R| > 0 since R ⊂ P .

Proof. Let there be some c ∈ CP,R and c′ ∈ CQ,R such that c∩c′ ̸= ∅. Then from Figure 5.2

we see that there is a convex polygonal region S such that R ⊂ S ⊆ P ∩Q. This contradicts

our earlier observation that a pair of sets in a cover-set cannot intersect beyond the region

51

that they are covers of.

For the next lemma we need an additional combinatorial fact.

Observation 5.3. If T is a set of l elements and S is a collection of subsets from T , each

of which has size ≥ l− k+1, then every set in S contains some element from any subset of

size ≥ k of T .

Proof. We can prove this by contradiction. Suppose there is a subset R of T with |R| ≥ k

that violates the above claim. Let S ∈ S such that R ∩ S = ∅. But S has at least l− k + 1

and R has at least k elements then R ∪ S ⊋ T . But by definition R ∪ S ⊆ T , which leads

to a contradiction.

Lemma 5. If the set system S consists of polygons Pi of at most k sides then every polygon

in the lattice has a cover-set of size at most k.

Proof. Let QI be any (l-gonal) region formed by the intersection of r polygons, |I| = r. Let

these polygons be {P1, . . . , Pr}. For each polygon Pi, at least l − k + 1 of the sides of QI

will be part of some polygonal chains (i.e., in CPi,QI
) of Pi. This can be seen since Pi has at

most k sides and is convex, only k−1 edges of Q can also be part of the edges of Pi. Let Ci

be the collection of all edges of QI that are in some chain of Pi. We can use Observation 5.3

to claim that there is a set T of at most k edges of QI such that every polygon Pi has at least

one edge in one of its chain from the set R. For each edge e of Q which is in T let Ie be the

index set corresponding to the collection of polygons which contains the edge in some chain.

Let QIe =
⋂

i∈Ie Pi. Clearly QI ⊂ QIe . If, for each pair of edges e, f of T , QIe ∩QIf = QI

then we are done. Otherwise we have for some pair QIe ∩ QIf = QIe∪If ⊃ QI . Then we

simply replace the two regions QIe and QIf with QIe∪If , which can only reduce the size of

our cover-set. Since I =
⋃

e∈R Ie we see that the collection {QIe} or a smaller collection

formed through intersections of sets from {QIe}forms a cover-set of QI and has size at most

k.

52

Theorem 5.4. On a set-system realized by convex polygons of bounded number of sides

(as above) with the elements representing points in the plane, we can solve the set maxima

with O(n+m) comparisons.

Proof. Proof immediately follows from Theorem 5.1 and Lemma 5.

53

Chapter 6: Concluding Remarks

In this part we looked at two comparisons-based problems; restricted sorting and set-

maxima. We gave parameterized algorithms for restricted sorting and solved a special

case for the set-maxima problem. However, both of these problems have so far turned out

to be hard to solve in full generality. In this chapter we discuss some of the difficulties

surrounding them and why any progress on the general front could be significant to our

understanding of comparisons-based problems.

6.1 Restricted Sorting

Recall that the deterministic algorithm presented in Chapter 3 had the complexity of O((q+

n) log n), where q was the number of forbidden pairs. The algorithm presented in Chapter

3 works with or without a total order guarantee. However, for the former case, we do not

have a matching lower bound. The trivial bound is Ω(n log n) which follows from case when

there are no forbidden pairs. Now, if we make q = O(n) we see that it matches this lower

bound. On the other hand if n − q = O(n log n) then we can simply check every edge,

making O(n log n) comparisons. We see that if the graph is either very dense or reasonably

sparse we get a tight result. The subtle point here is that these two cases are easy for

completely different reasons. In the case when the graph is dense, it is easy because we

can infer relations between many pairs using transitivity. This can be observed form the

fact that our original algorithm finds large cliques which can be sorted optimally and uses

them to partition other elements. In the case when the graph is sparse in the above sense,

we do not know a way to use transitivity and only saved by the fact that checking all the

O(n log n) edges is not very costly. We believe, in order to solve the general case we need

to understand the case when the graph is sparse.

54

The situation is complicated by the fact that with total order guarantee the input graph

G determines a set of “forbidden orders” which reduces the set of output orderings and

makes the comparison tree bound smaller. Let us discuss this with an example. Consider

the input set X having three elements {u, v, w} and G be the path uvw. Clearly, a forbidden

pair (here (u,w)) cannot be consecutive elements in any of the ordering of X. Otherwise,

we cannot sort all the elements. In the above case there are only two permissible linear

extensions: (u, v, w) and (w, v, u). Thus G forbids a set of total orders from O. However,

a collection of total orders does not necessarily defines a poset whose linear extensions are

exactly those from the set. This follows from the fact that there are many more collections of

total orders (O(2n!)) than there are labeled posets (O(2
n2

4))[10]. For example, in the above

the two permissible orders (u, v, w) and (w, v, u) produce an anti-chain. However, the set of

linear extensions of an anti-chain consists of all possible orderings of u, v, w. To determine

the number of permissible orders we have to determine the number of Hamiltonian paths in

G, which is a hard problem. In this context we can generalize the balancing pairs conjecture

as follows.

Conjecture 1. [(ϵ, δ)-balancing pairs] For some 0 < δ < 1 we can always find a non-empty

set of unoriented edges in G of size at most ϵn such that orienting them reduces the number

of possible directed Hamiltonian paths in G by at least δ.

The classical balancing pairs conjecture 1 is the special case when G is the complete

graph and ϵ = 1/n.

Another important problem is to determine the complexity of finding the median, under

the total order guarantee. Recall that we used an approximate median to partition the sets

in our deterministic algorithm. Although the median element may not be comparable to

all elements, a faster way to find it may still yield a faster sorting algorithm. However we

believe that under the restricted comparison model finding the median may be as hard as

sorting.

1Original conjecture which supports the existence of a δ = 1/3, still remain unsolved. However as stated

previously the current best known value of δ is 3/11.

55

Figure 6.1: For the Peterson’s graph (left) there are 10 different Hamiltonian paths (20

total orders). However the starfish graph has none, as it is not Hamiltonian.

Another area to look at is to instead of using the number of forbidden edges, we work

with some other parameters of the graph G. For example we can study graphs which

satisfy certain local and global connectivity constraints and develop specialized results for

such graphs. Figure 6.1 shows an example that contradicts the intuition that having more

edges necessarily yields more acyclic orientations with directed Hamiltonian paths.

6.2 Set-Maxima

In this section we discuss the apparently hard input instances for the set-maxima problem.

Recall the two instances for which we have an optimal deterministic algorithms. In the

first instance the set-system is determined by paths from a vertex weighted tree. In this

case we have many sets that overlaps with each other in the form of subpaths of larger

paths. We see from Komlos’ algorithm [30] that we can use the overlapping nature of this

set-system in our favor by using the monotonicity property of the maximum of each of the

subsets. That is, for two subset S1, S2 with S1 ⊂ S2 we have maxS1 ≤ maxS2. Another

interesting observation we can make about the Komlos’ algorithm is that it processes order

information in a local manner as we descend downwards in the tree. In contrast the set

system for the projective geometry problem has a bounded overlap. Specifically for PG(d, q)

we know that the d hyperplanes intersect at a single point. However as we saw earlier we

can also use the bounded overlap property to work for us by noting that such a set-system

56

will have an expanding property. Informally, each set is spread almost uniformly if we

look at the bipartite representation of the set-system, where left vertices are elements and

right vertices are sets. The edges are determined by set-inclusion. This helps us devise a

global strategy by focusing on determining elements of lower ranks (higher value). Similar

to the restricted sorting problem we do not know how to solve set-maxima optimally for

the intermediate case. That is, the subsets may have moderate overlap and may even have

expansion properties but not enough to make it a highly expanding expander. For example

the technique used in [28] fails to work when the expansion is not highly expanding.

6.2.1 Local Sorting

An interesting special case of set maxima is the local sorting problem. In this problem each

set contains exactly two elements, hence the set system can be represented as a graph. The

goal is to determine the orientation of every edge. This looks very similar to the restricted

sorting problem. However there is a crucial difference. In this problem we are allowed to

compare any pair, regardless of whether they form an edge. However, we only are required

to output the relations between adjacent vertices. Naturally this problem has a local flavor

and hence the name. This problem also remains open when the graph G is arbitrary. It

has the same comparison tree lower bound as the set maxima problem, which is determined

by the number of acyclic orientation of G. Although we were not able to come up with an

algorithm for local sorting we found a graph which we believe serves as a difficult instance

for this problem.

Observe that for any d-regular graph the logarithm of the number of acyclic orientations

is O(n log d), from the formula in Chapter 5. Now consider an easy case, where G is the

union of n/d cliques with d vertices in each (assuming n is divisible by d). In this case we

can simple sort every clique with O(d log d) comparisons for a total of (n log d) comparisons.

Thus it seems we should consider graphs that do note have cliques or other dense subgraphs.

One good example of such a graph is the hypercube. A hypercube graph with n = 2d

vertices is d-regular. However, it is also bipartite and has expanding properties. Thus every

57

induced subgraph is sparse (has an edge density of d) and determining many relations using

transitivity seems difficult in this case. Hence we believe that solving the local sorting for

the hypercube graph will give us better insight for the the general case.

58

Part II

Part II: Problems On Graph

Reconfigurations

59

Chapter 7: Reconfiguration Problems

In the most general sense combinatorial reconfiguration problems concerns how we can

transform one combinatorial arrangement to another. Combinatorial arrangements could

include, for example, geometric arrangements. Such as arrangements of points in a space,

triangulation of convex polytopes, simplicial complexes. Finding the shortest flip sequence

between two triangulation of a convex polygon is one such example[33]. One of the major

area of applied research concerns how to transform molecular or biological structures.

In this part we to look at reconfiguration problems on graphs. Specifically, we will focus

on two types of results: one is computational and the other will be structural. For the result

we look at the computational complexity of some special configuration problems. On the

other hand structural results gives bounds on “reconfigurability” of graphs in terms of its

properties.

We first start with our model of computation, which is different from the first part.

Unless otherwise stated throughout this Part we shall use the RAM model for presenting

our results. Problems in this half are generally thought to be NP-Hard or worse. The pointer

machine model would be too restrictive for our purpose. It will make some memory-lookup

type operations too cost-prohibitive, since pointer representation may result in exponential

blowup in complexity.

7.1 General Framework

Before introducing graph reconfiguration let us first discuss a relatively general formulation

on groups. We start with some definitions. Let Sn be the Symmetric Group: set of

all permutations over [1, n] and group operations, the compositions of permutations. A

Permutation Group is any subgroup of Sn. Let H be a permutation group. A subset S of

60

elements is called a generating set of H if every element of H can be generated by sequence

of compositions of these elements. There may be many such generating sets for a group.

Suppose S is the set of all permutations that are involutions. A permutation π is an

involution if every cycle is either of size 1 or 2. If π is an involution then it is its own

inverse, that is for any permutation σ, π(πσ) = σ. Further it can be shown that we can

generate any permutation of Sn by composing at most two involutions from S. Thus S is

a generating set for Sn. Next we introduce a classical problem on generators:

Definition 7.1. (Minimum-Generating-Sequence Problem) Let H be a permutation group

and S a generating set. Given a permutation π we want to determine a sequence of gener-

ators from S of minimum length that generates π starting from the identity permutation.

We denote the length as MGS(H, S, π).

If π ̸∈ H then we take MGS(H, S, π) =∞.

When the group we are working with is clear then we simply use MGS(S, π). MGS was

first shown to be NP-hard by Evan and Goldreich [34]. For arbitrary permutation groups

Jerrum [35] showed this problem to be PSPACE-Complete. This remains true even when

each generator is of order 2. A generator g ∈ S is of order k if k is the minimum number

such that gk = e, where gk denotes composition of g with itself k times and e is the identity

permutation. In the next section we introduce a special case for the symmetric group where

the generating set S is determined by matchings in a specified graph.

7.2 Examples of Reconfiguration Problems

Let G(V,E) be a simple connected labeled graph with n vertices. Vertices are labeled from

1 to n. Each vertex contains a pebble initially and no pebbles can share a vertex. Without

loss of generality we assume pi is the pebble on vertex labeled i. A arrangement A is a

collection of permutations. Starting from the input configuration we move pebbles in such

way that we reach a configuration that is in A. That is, the final placement of pebbles

specify a permutation that belongs in the arrangement. However, an arrangement can be

61

specified implicitly, and the set of permutations that satisfy the arrangement may not be

easily computable.

In each step we can move the pebbles in the following way to get from the starting

configuration to a final configuration that satisfy the arrangement We pick a matching

M ⊂ E (matching is a set of mutually vertex disjoint edges) and we swap the pebbles across

matched edges. Given a reconfiguration problem (G,A) the minimum length sequence of

matchings that can reach a satisfying arrangement is the reconfiguration time of G with

respect to A. The reconfiguration time is a general term, we use different names based on

the nature of A. Next we look at some interesting problems that arise from different types

of arrangements A.

7.2.1 Permutation Routing

This is one of the more natural model of routing on a communication network. For this

problem we specify our arrangement A with a single permutation π, that determines the

destination vertex for each pebble. This problem was originally introduced by Alon and

others [36] and has a rich literature. Some authors have termed it as the Parallel Token

Swapping problem. This problem is also a special case of the MGS problem. Given a graph

G and a permutation π the minimum number of steps necessary to route all the pebbles

are known as the routing time, rt(G, π). We will discuss permutation routing in more

detail in the next chapter, so we skip it for now. (Figure 7.2 gives an example of routing a

permutation on a cube.)

7.2.2 Acquaintance Time

This new property of graph was introduced recently [37]. Given a graph G with each ver-

tex containing a pebble, a pebble must be acquainted with every other pebble. We say

two pebbles are acquainted if they shared an edge at some point. The goal is acquaint all

pebbles with each other using the minimum number of steps. This is called the acquain-

tance time of a graph (ac(G)). In [37] authors showed that it is NP-Hardto compute the

62

acquaintance time and for every graph the acquaintance time is bounded by O(n3/2). In

this problem no final arrangement is specified directly, but implied in the following sense.

We can think of the constraint that every pebble must be acquainted in the following

way. Let Πij be the set of all permutation where pebble pi is adjacent to pebble pj . Let

M = (M1,M2, . . . ,Mt) be a sequence of matchings that acquaints every pebble at least

once. Let πk = Mk(Mk−1(. . . (e) . . .)) be the permutation achieved after k ≤ t steps. Then,

for every i, j there is a t(i, j) ≤ t such that πt(i,j) ∈ Πij . (Example of graph with highest

acquaintance time is given in Figure 7.1.)

Figure 7.1: The stars of stars has the highest value of acquaintance time O(n3/2). The outer

and inner stars all have degree θ(
√
n). We can acquaint a pebble with others by placing it

on the center of various stars.

7.2.3 Sorting Permutations

Sorting on graphs using pebbles is different from the sorting algorithms we discussed pre-

viously. In our previous framework we used a global memory to store the elements (here

these are the pebbles). Further, we choose a series of comparisons that were dependent

on outcomes of previous comparisons. When sorting in graph we will do away both of the

above features.

In this problem the initial configuration is unknown. That is we do not know the label of

the pebble which is on the vertex labeled i. Additionally, we are given a permutation which

determines the final destination of pebbles, as in the case of permutation routing. We still

63

use matchings to move pebbles. However, we need to compare pebbles along matched edges

to help guide the pebbles to their destination. One obvious question is then why do not we

sort the pebbles first and then use their rank to determine the final permutation? There are

mainly two reasons why we don’t this. Firstly, reconfiguration model that we discuss here

can be realized as a parallel or distributed computing model. Parallelism is exploited via

matchings, where we can move many pebbles simultaneously. Reconfiguration problems is

essentially the study of how much parallelism one can achieve on a family of graphs for some

arrangement constraints. If we had sorted the pebbles initially (say using a global memory)

then this local flavor is lost. Secondly, these matchings which we use to compare pebbles

and swap based on their labels is oblivious. That is the next matching is not dependent

on the results of the comparisons arising out of the previous ones. This adds robustness

in the sense that the same sequence of matching can be used to sort every possible input

configuration of pebbles. Thus they can be realized using specialized hardwares, which are

known as sorting networks. Additionally, as we shall see in later chapters, for many graphs

we can efficiently sort pebbles using this parallel model.

7.2.4 Visiting Time

This problem is a relaxation of the permutation routing problem. It also has a flavor of the

acquaintance problem, in that the arrangement is implicitly specified. Given a permutation

π we want every pebble pi to visit the node labeled π(i) at some point during the routing.

However, we relax the condition that they have to be at this node when the routing finishes.

The visiting time vt(G, π) for graphG and a permutation π is defined similarly. It is obvious

that for every π, vt(G, π) ≤ rt(G, π). As an example, the visiting time for the permutation

given in Figure 7.2 is 3, which is one less than the routing time. This can be done be choos-

ing the following sequence of matching: first match all edges {(1, 2), (3, 4), (5, 6), (7, 8)},

then {(1, 3), (2, 4), (5, 7), (6, 8)} and lastly {(1, 5), (2, 6), (3, 7), (4, 8)}. Thus the visiting time

problem is useful to determining lower bound for routing time.

64

7.3 Sequential Model

As the name suggests in this model each step consists of choosing a single edge and swapping

the pebbles on its incident vertices. In the context of permutation routing and sorting this

model has been studied extensively. This model is relevant to our matching model as any

upper bound on the number steps for reconfiguration time is also going to be an upper

bound on the parallel model. Also it is generally easier to prove result using the sequential

model than the parallel model. For example there is 4-approximation algorithm for the

routing time in the sequential model[38]. However, we do not have such results in the

parallel model. We are going to discuss some literature on routing time for graphs under

sequential model in the next chapter.

65

1(2) 2(3)

3(4)
4(5)

5(6) 6(7)

7(8)
8(1)

(a) Intial Configuration.

1(2) 2(3)

3(4)
4(5)

5(6) 6(7)

7(8)
8(1)

1(3) 2(2)

3(4)
4(5)

5(7) 6(6)

7(1)
8(8)

(b) After step 1

1(3) 2(2)

3(4)
4(5)

5(7) 6(6)

7(1)
8(8)

1(3) 2(2)

3(1)
4(8)

5(7) 6(6)

7(4)
8(5)

(c) After step 2

1(3) 2(2)

3(1)
4(8)

5(7) 6(6)

7(4)
8(5)

1(1) 2(2)

3(3)
4(8)

5(7) 6(6)

7(5)
8(4)

(d) After step 3

1(1) 2(2)

3(3)
4(4)

5(5) 6(6)

7(7)
8(8)

1(1) 2(2)

3(3)
4(8)

5(7) 6(6)

7(5)
8(4)

(e) After step 4

Figure 7.2: Routing the permutation π = (12345678) on a Cube.

66

Chapter 8: Hardness Of Permutation Routing

This chapter is about permutation routing on graphs. In particular we explore some com-

putational aspects of the model. As mentioned previously, this model was originally intro-

duced by Alon and others [36] in the early 1990’s. We repeat some of the definitions that

are specific to this chapter.

Consider a undirected labeled graph G(V,E). Each vertex of V contains a pebble with

the same label as the vertex. Pebbles move along edges using a sequence of swaps. A

set of swaps (necessarily disjoint) that occurs concurrently is called a step. Such a set is

determined by a matching. A permutation π gives the destination of each pebble; that is,

the pebble pi on vertex i is destined for the vertex π(i). The task is to route each pebble

to their destination via a sequence of matchings. The routing time rt(G, π) is defined as

the minimum number of steps necessary to route all the pebbles for a given permutation.

The routing number of G, denoted by rt(G), is defined as the maximum routing time over

all permutations. Let m = |E| and |G| = n = |V |.

Determining the routing time is a special case of the MGS problem for groups, as follows.

Consider a spanning tree T of G. We can use the edges of T to route pebbles in G. For

simplicity, assume we move one pebble at a time to its destination. We can pick a pebble

whose destination is a leaf in T ; there will always be such a pebble. We move this pebble

to its destination using a sequence of swaps (matchings with singleton edges). Once the

pebble is at its destination, we recursively solve the routing problem for the tree T ′ which

we get from T after removing that leaf. This entire routing scheme takes O(n2) steps. But

more importantly it shows that as long as G is connected we can route every permutation

in G in a finite number of steps. That is, the set of matchings in G, denote by MG, forms

a generating set for the symmetric group. Hence, the permutation routing problem is a

67

special case of the MGS problem.

The serial version, where swaps takes place one at a time, is also of interest. This has

recently garnered interest after its introduction by Yamanaka and others [39]. They have

termed it the token swapping problem. This problem is also NPC as shown by Miltzow

and others [38] in a recent paper. The authors also prove the token swapping problem is

hard to approximate within a (1 + δ) factor, for any δ > 0. They also provide a simple

4-approximation scheme for the problem. A generalization of the token swapping problem

(and also the permutation routing problem) is the colored token swapping problem [39,40].

In this problem the vertices and the tokens are partitioned into equivalence classes (using

colors) and the goal is to route all pebbles in such a way that each pebble ends up in some

vertex with the same class as the pebble. If each pebble (and vertex) belong to a unique

class then this problem reduces to the original token swapping problem. This problem is

also proven to be NP-complete by Yamanaka and others [39] when the number of colors is

at least 3. The problem is polynomial time solvable for the two-color case.

8.1 Prior Results

Almost all previous literature on this problem focused on determining the routing number

for typical graphs. In the introductory paper, Alon and others [36] show that for any con-

nected graph G, rt(G) ≤ 3n. This was shown by considering a spanning tree of G and using

only the edges of the tree to route permutations. Note that this is an order of magnitude

better than the trivial algorithm we discussed above. Later Zhang and others [41] improve

this upper bound to 3n/2 +O(log n). This was done using a new decomposition called the

caterpillar decomposition. This bound is essentially tight as it takes ⌊3(n− 1)/2⌋ steps to

route some permutations on the star K1,n−1.

68

Ti

Tj

Figure 8.1: A star on the left and a Caterpillar to the right. A tree has γ-type star
decomposition if every subtree has ≤ γn vertices. In a (α, β)-caterpillar decomposition,
every Tj connected to one of the end vertices has size at most βn and sum total of all

vertices in the trees connected to the central spine (like Ti) is ≤ αn. Every tree has a 1
3 -star

or a (13 ,
1
3)-caterpillar decomposition.

There are also some known results for routing numbers of graphs besides trees. It is

known that for the complete graph and the complete bipartite graph the routing number is

2 and 4 respectively [36]. The result for complete graph was known much earlier as a fact

about permutation groups. A possible two step routing scheme given by two involutions

is as follows: without loss of generality we can assume the permutation to be routed is

just one cycle. Otherwise, we can route each cycle independently on the disjoint complete

subgraphs. The two involutions for the cycle (1234 . . . n) are

π1 = (1, n)(2, n− 1) . . . (i,m− i+ 1) . . .

π2 = (1, n− 1)(2, n− 2) . . . (i, n− i) . . .

The result for the complete bipartite graph is attributed to W. Goddard. Let A and B

(|A| = |B| = m) be the left and right sets respectively. Then, without loss of generality we

can assume the permutation we want to route moves every pebble from A to B and vice

69

versa. Note that if this was not the case then it will take us one extra step. So we have to

come up with a 3-step scheme for this special case. A possible 3-step matching strategy via

permutations (π1, π2, π3):

π1 = (1, 2)(3, 4) . . . (2⌊m
2
⌋ − 1, 2⌊m

2
⌋)(2⌊m

2
⌋+ 2, 2⌊m

2
⌋+ 3) . . . (2m− 2, 2m− 1),

π2 = (1, 2m)(3, 2m− 2) . . . (2⌈m
2
⌉ − 1, 2⌊m

2
⌋+ 2),

π3 = (3, 2m) . . . (2⌊m
2
⌋+ 1, 2⌈m

2
⌉+ 1).

Li and others [42] extend these results to show rt(Ks,t) = ⌊3s/2t⌋ + O(1) (s ≥ t). For the

n-cube Qn we know that n + 1 ≤ rt(Qn) ≤ 2n − 2. The lower bound is quite straightfor-

ward. The upper bound was discovered by determining the routing number of the Cartesian

product of two graphs [36].

Cartesian product of two graphs are defined as follows. For two graphs G1(V1, E1) and

G2(V2, E2) their Cartesian product is the graph G1□G2 whose vertex set is V = V1 × V2

and there is an edge between (u1, v1), (u2, v2) ∈ V iff either u1 = u2 and (v1, v2) ∈ E2 or

v1 = v2 and (u1, u2) ∈ E1. If G = G1□G2, then:

rt(G) ≤ 2min(rt(G1), rt(G2)) + max(rt(G1), rt(G2)). (8.1)

Since Qn = K2□Qn−1 the result follow. Where K2 is the complete graph with two

vertices. The base case, rt(Q3), was determined to be 4 via a computer search[42].

8.2 Computational Results

Some of the computational results we present in this chapter are summarized below.

1. If G is bi-connected then deciding whether rt(G, π) = k for any π and k > 2 is

NP-complete.

70

2. For any graph, deciding if rt(G, π) ≤ 2 can be done in polynomial time, for which we

give a O(n2.5) time algorithm.

3. As a consequence of our NP-completeness proof of the routing time we show that the

problem of determining a minimum sized partitioning scheme of a colored graph such

that each partition induces a connected subgraph is NP-complete.

4. We introduce a notion of approximate routing called maximum routability and give

an approximation algorithm for it.

8.3 A O(n2.5) Time Algorithm for Deciding when rt(G, π) ≤ 2

In this section we present a polynomial time deterministic algorithm to compute a two step

routing scheme if one exists. It is trivial to determine whether rt(G, π) = 1. Hence, we only

consider the case if rt(G, π) > 1. The basic idea centers around whether we can route the

individual cycles of the permutation within 2 steps. Let π = π1π2 . . . πk consists of k cycles

and πi = (πi,1 . . . πi,ai), where ai is the number of elements in πi. A cycle πi is identified

with the vertex set Vi ⊂ V whose pebbles need to be routed around that cycle. We say a

cycle πi is self-routable if it can be routed on the induced subgraph G[Vi] in 2 steps.

If all cycles were self-routable we would be done, so suppose that there is a cycle πi

that needs to match across an edge between it and another cycle πj . Let G[Vi, Vj] be the

induced bipartite subgraph corresponding to the two sets Vi and Vj .

Lemma 6. If πi is not self-routable and it is routed with an edge from Vi to Vj then πi

and πj are both routable in 2 steps when all of the edges used are from G[Vi, Vj] and when

|Vi| = |Vj |.

Proof. We prove this assuming G is a complete graph. Since for any other case the induced

subgraph G[Vi ∪ Vj] would have fewer edges, hence this is a stronger claim. Let the cycle

πi = (πi,1, . . . , πi,s, . . . , πi,|Vi|). If there is an edge used between the cycles then there must

be such an edge in the first step, since pebbles need to cross from one cycle to another and

71

πi

πj

πi;s

πj;t

Figure 8.2: The two cycles are shown as concentric circles. The direction of rotation for the
outer circle is clockwise and the inner circle is counter-clockwise. Once, we choose (πi,s, πj,t)
as the first matched pair, the rest of the matching is forced. Solid arrows indicate matched
vertices during the first round. Note that if the cycles are unequal then the crossed vertices
in the figure will not be routed.

back. Assume πi,s is matched with πj,t in the first step. From Figure 8.2 we see that the

crossing pattern is forced and unless |Vi| = |Vj |, the pattern will fail.

A pair of cycles πi, πj is mutually-routable in the case described by Lemma 6. Naively

verifying whether a cycle πi is self-routable, or a pair (πi, πj) is mutually-routable takes

O(|Vi|2) and O((|Vi| + |Vj |)2) time respectively. However, with additional bookkeeping we

can compute this in linear time on the size of the induced graphs. This can be done by

considering the fact that no edge can belong to more than one routing scheme on G[Vi]

or on G[Vi, Vj]. Hence the set of edges are partitioned by the collection of 2 step routing

schemes. Self-routable schemes, if they exist, are forced by the choice of any edge to be

in the first step; no edge is forced by more than four initial choices, leading to a test that

runs in time proportional in |Vi|. Mutually-routable schemes, if they exist, are one of |Vi|

(= |Vj |) possible schemes; each edge votes for a scheme and a scheme is routable if it gets

enough votes, leading to a test that runs in time proportional in |G[Vi, Vj]|. All the tests

can be done in O(m) time.

We define a graph Gcycle = (Vcycle, Ecycle) whose vertices are the cycles (Vcycle = {πi})

and two cycle are adjacent iff they are mutually-routable in 2 steps. Additionally, Gcycle has

self-loops corresponding to vertices which are self-routable cycles. We can modify existing

72

maximum matching algorithm to check whether Gcycle has a perfect matching (assuming

self-loops) with only a linear overhead. This can be done by creating two copies of the

graph and adding an edge between two copies of a vertex with a self loop. Then remove

the self loops. The next lemma follows immediately:

Lemma 7. There is a perfect matching in Gcycle iff rt(G, π) = 2.

The graph Gcycle can be constructed in O(m) time by determining self and mutual routabil-

ity of cycles and pair of cycles respectively. Since we have at most k cycles, Gcycle has ≤ 2k

vertices and thus O(k2) edges. Hence we can determine a maximum matching in Gcycle in

O(k2.5) time [43]. This gives a total runtime of O(n+m+ k2.5) for our algorithm to find a

2-step routing scheme of a connected graph if one exists.

Corollary 1. rt(G) = 2 iff G is a clique.

Proof. (⇒) A two step routing scheme for Kn was given in [36].

(⇐) If G is not a clique then there is at least a pair of non-adjacent vertices. Let (i, j)

be a non-edge. By Lemma 6 the permutation (ij)(1)(2) . . . (n) cannot be routed in two

steps.

8.4 Determining rt(G, π) ≤ k is Hard for Any k ≥ 3

Theorem 8.1. For k ≥ 3 computing rt(G, π) is NP-Complete.

Proof. Proving the problem is in NP is trivial, we can use a set of matchings as a witness.

We give a reduction from 3-SAT. We first define three atomic gadgets (see Figure 8.3) which

will be use to construct the variable and clause gadgets. Vertices whose pebbles are fixed

(1-cycles) are represented as red circles. Otherwise they are represented as black dots. In

the first three sub-figures ((a)-(c)) the input permutation is (a, b)1. In all our constructions

we shall use permutations consisting of only 1 or 2 cycles. Each cycle labeled i will be

1We do not write the 1 cycles explicitly as is common.

73

represented as the pair (ai, bi). If the correspondence between a pair is clear from the

figure then we shall omit the subscript. It is an easy observation that rt(P3, ((a, b))) =

rt(P4, ((a, b))) = rt(H, ((a, b))) = 3. In the case of the hexagon H we see that in order to

route the pebbles within 3 steps we have to use the left or the right path, but we cannot

use both paths simultaneously (i.e., a goes along the left path but b goes along the right

or vice-versa). Figure 8.3(e) shows a chain of diamonds connecting u to v. Where each

diamond has a 2-cycle, top and bottom. If vertex u is used to route any pebble other than

2-cycles to its right then the chain construction forces v to be used in routing the 2-cycles

to its left or vice-versa. This chain is called a diamond-chain and it is used to propagate

a choice (of left or right). In our construction we only use chains of constant length to

simplify the presentation of our construction.

(a)

a

b b

a a

b b

a

x y :z

C = x+ y + :z
H

A diamond chain

Shown as a path

A clause gadget

(b) (c) (d) (e)

P3 P4

u
v

vu

Figure 8.3: Atomic Gadgets, pairs (a, b) need to swap their pebbles. The unmarked red
circles have pebbles that are fixed.

Clause Gadget:

Say we have clause C = x∨y∨¬z. In Figure 8.3(d) we show how to create a clause gadget.

This is referred to as the clause graph GC for the clause C. The graph in Figure 8.3(d)

can route πC = (aC , bC) in three steps by using one of the three paths between aC and bC .

Say, aC is routed to bC via x. Then it must be the case that vertex x is not used to route

74

x1

:x1

x2

:x2

:x1

x1
x2

:x2 :x3

x3 xmX

:xmX

a1 a2

a1 a2 a3 amX

b1 b2

b2b1 b3 bmX

(a)

(b)

H1 H2

H2H1 H3 HmX

u1 u2 u3

u3u2u1 u4

umX

umX+1

C

C

Figure 8.4: Variable graph of X. (a) is a special case for mX = 2, (b) is the general case.

any other pebbles. We say the vertex x is owned by the clause. Otherwise, it would be not

possible to route aC to bC in three steps via x. We can interpret this as follows. A clause

has a satisfying assignment iff each clause graph owns a vertex.

Variable Gadget:

Construction of the variable gadgets is done in a similar manner. The variable gadget GX

corresponding to the variable x is shown in Figure 8.4(b). Figure 8.4(a) is essentially a

smaller version of 4(b) and is easier to understand. If we choose to route a1 and b1 via

the top-left path passing through x1 and u1 then (a2, b2) must be routed via x2 and u2.

This follows from the fact that since u1 is occupied the pebbles in the diamond chain C

(the dashed line connecting u1 with u3) must use u3 to route the right-most pair. By

symmetry, if we choose to route (a1, b1) using the bottom-right path (via ¬x1, u2) then we

also have to choose the bottom right path for (a2, b2). These two (and only two) possible

(optimal) routing schemes can be interpreted as variable assignments. Let GX be the graph

corresponding to the variable X (Figure 3(b)). The top-left routing scheme leaves the

vertices ¬x1,¬x2, . . . free to be used for other purposes since they will not be able take part

75

in routing pebbles in GX . Thus this can be interpreted as setting the variable X to false.

This “free” vertex can be used by a clause (if the clause has that literal) to route its own

pebble pair. That is they can become owned vertices of some clause. Similarly, the bottom-

right routing scheme can be interpreted as setting X to true. For each variable we shall have

a separate graph and a corresponding permutation on its vertices. The permutation we will

route on GX is πX = (a1b1)(a2b2) . . . (amX , bmX)πfX . The permutation πfX corresponds to

the diamond chain connecting u1 with umX+1. The size of the graph GX is determined by

mX , the number of clauses the variable X appears in.

Reduction:

For each clause C, if the literal x ∈ C then we connect xi ∈ GX (for some i) to the

vertex labeled x ∈ GC via a diamond chain. If ¬x ∈ C then we connect it with ¬xi

via a diamond chain. This is our final graph Gϕ corresponding to an instance ϕ of a 3-SAT

formula. The input permutation is π = πX . . . πC . . . πf . . ., which is the concatenation of all

the individual permutations on the variable graphs, clause graphs and the diamond chains.

This completes our construction. Figure 8.5 gives sketch of the final graph Gϕ. We need to

show, rt(Gϕ, π) = 3 iff ϕ is satisfiable. Suppose ϕ is satisfiable. Then for each variable X,

if the literal x is true then we use bottom-right routing on GX , otherwise we use top-left

routing. This ensures in each clause graph there will be at least one owned vertex. Now

suppose rt(Gϕ, π) = 3. Then each clause graph has at least one owned vertex. If x is a free

vertex in some clause graph then ¬x is not a free vertex in any of the other clause graphs,

otherwise variable graph GX will not be able route its own permutation in 3 steps. Hence

the set of free vertices will be a satisfying assignment for ϕ. It is an easy observation that

the number of vertices in Gϕ is polynomially bounded in n,m; the number of variables and

clauses in ϕ respectively and that Gϕ can be explicitly constructed in polynomial time.

Corollary 2. Computing rt(G, π) remains hard even when G is restricted to being 2-

connected.

76

X1 X2 X3 Xn

C1 C2 Cm

Figure 8.5: The graph Gϕ.

Proof. This easily follows from the fact that the graph Gϕ has minimum degree of 2 and

hence it is 2-connected.

8.5 Connected Colored Partition Problem (CCPP)

In this section we go slightly off track to show that the gadgets used to prove permutation

routing is hard can be used to prove a hardness result of a partitioning problem on graphs;

this demonstrates robustness of our construction Let G be a graph whose vertices are colored

with k colors. We say a partition S = {S1, . . . , Sr} of the the vertex set V respects the

77

coloring C (where C : V → {1, . . . , k}) if each set of vertices of a particular color is contained

within a single block of the partition (necessarily r ≤ k). Note that a block may contain

many colors. Further, we require the induced subgraph G[Si] be connected, for every i.

Figure 8.6 gives an example of a CCPP instance.

G, with 4 colors 2 connected blocks, with p = 4

Figure 8.6: An example of a CCPP instance.

Given a graph G, a coloring C (with k colors) and a integer t ≤ n the decision version

of the problem asks, whether there exists a valid partitioning whose largest block has size

at most t. We denote this problem by CCPP(G, k, t). If we replace the requirement of

connectedness of the induced subgraphs with other efficiently verifiable properties then it is

a strict generalization of the better known monochromatic partitioning problems on colored

graphs (see for example [44]). Note that the connectivity requirement on the induced

subgraphs is what makes this problem graphical. In fact without it the problem becomes

trivial; as one can simply partition the vertices into monochromatic sets, which is the best

possible outcome. CCPP(G, k, t) is in P if t is constant, since one can simply enumerate all

partitions and there are O(kt) of them.

Theorem 8.2. CCPP(G, k, t) is NP-complete for arbitrary k and t.

Proof. The proof essentially uses a similar set of gadgets as used in the proof of Theorem 8.1.

The idea is to interpret a route as a connected partition. We show that even when each

78

x1

x2 y2

y1
:z1

:z2

a

b

Figure 8.7: A modified clause gadget (from the proof of Theorem 7.1) for the clause C =
x ∨ y ∨ ¬z.

color class is restricted to at most two vertices the problem remain NPC . This is done

via a reduction from the 3-SAT problem. We reuse some of the gadgets from the proof of

Theorem 8.1, but we interpret them differently. Lets discuss the clause gadgets first. In

Figure 8.7 we see the graph corresponding to the clause C = x∨y∨¬z. The vertices a and b

have the same color, lets say c so that they identify with the clause C. All the other vertices

(shown as red circles) have unique colors which differ from c. Clearly any valid partition of

C must include both pair of vertices along some line. Hence in an optimal partition of the

clause graph the largest subgraph is of size 4.

The variable gadgets are same as before (see Figure 8.4) except we do away with the

diamond chain and fuse the two end vertices together. So for example in Figure 8.4(a),

u1 = u3. We also make the gadgets twice as long, so instead of having mX hexagons we

now have 2mX of them. The vertices (ai, bi) have the same color, which is distinct from

every other color. As with the clause graphs the red vertices in the variable gadgets all have

unique colors.

To construct the graph Gϕ corresponding to a boolean formula ϕ we do the following.

Since we are not using the diamond chains anymore we directly fuse vertices from clause

graphs and variable graphs. So for example if the clause C has variable x as a true literal we

fuse two vertices xi and xj (for some i, j ≤ 2mX) to the two vertices x1 and x2 in the clause

graph. That is x1, x2 ∈ {xi, xj}. In every partition the pair ai, bi must be included since

they have the same color. Since each partition must be connected this can happen if either

79

we take the segment (ai, xi, ui, bi) or the segment (ai, ui+1 mod 2mX
,¬xi+1 mod 2mx , bi). Call

them top-left and bottom-right segments. Clearly, if we take the top-left segment as part of

some partition for any pair (ai, bi) we have to use the corresponding top-left segments for all

other (a, b) pairs in the same variable graph. Otherwise, the segments will not be connected.

The same is true with the bottom-right segments. This forces variable assignments. If we

choose the top-left segments then the bottom-right vertices (¬xi’s) which corresponds to the

negated literals will be free and a pair of them can be use to partition a clause graph which

contains those literal vertices. If Gϕ has a partitioning scheme such that every partition is

of size 4 then ϕ is satisfiable. We can look at the partition to determine which segments

were chosen from the variable graph which determines the variable assignment. Since every

clause graph has been partitioned into components of size at most 4, we conclude that every

clause is satisfied. The other direction can be proven in a similar manner.

8.6 Routing As Best You Can

It is often desirable to determine how many packets we can send to their destination within a

certain number of steps. Consider the problem of propagating information on social media.

In the context of permutation routing this leads to a notion of maximum routability. Given

two permutation π and σ let |π − σ| denote the number of fixed points in τ , such that

τπ = σ. We define maximum routability mr(G, π, k) as follows:

mr(G, π, k) = max
σ∈Sn, rt(G,σ)≤k

|π − σ|

We denote by MaxRoute the problem of computing the maximum routability. Essentially,

σ is one permutation, out of all permutations, that can be routed in ≤ k steps and that has

the maximum number of elements in their correct position as given by π. The permutation

σ may not be unique. It can be easily shown (as a corollary to Theorem 8.1) that the

decision version of this problem is NP-Hard, since we can determine rt(G, π) by asking

80

whether mr(G, π, k) = n. (Of course rt(G, π) = O(n) for any graph, hence with O(log n)

number of different choices of k we can to compute rt(G, π) exactly.)

In this section we give an approximation algorithm for computing the maximum routabil-

ity when the input graph G satisfies the following restriction. If the maximum degree of

G is ∆ such that (∆ + 1)k = O(log2 n) then mr(G, π, k) can be approximated within a

factor of O(n log logn/ log n) from the optimal. Unfortunately a good approximation for

rt(G, π) does not lead to a good approximation ratio when computing mr(G, π, k) for any

k > 2. The reason being that with an optimal algorithm for routing π on G it is conceivable

that all pebbles are displaced at the penultimate stage and the last matching fixes all the

displaced pebbles.

Our approximation algorithm is based on a reduction to the MaxClique problem. The

MaxClique problem has been extensively studied. In fact it is one of the defining problems

for PCP-type systems of probabilistic verifiers [45]. It has been shown that MaxClique can

not be approximated within a n1−o(n) factor of the optimal [46]. The best known upper

bound for the approximation ratio is by Feige [47] of O(n(log log n/ log3 n)) which improves

upon Boppana and Halldorsson’s [48] result of O(n/ log2 n). Note that if there is a f(n)-

approximation for MaxClique then whenever the clique number of the graph is ω(f(n)), the

approximation algorithm returns a non-trivial clique (not a singleton vertex).

Theorem 8.3. Given a graph G whose maximum degree is ∆, in polynomial time we

can construct another graph Gclique, with |Gclique| = O(n(∆ + 1)k), such that if the clique

number of Gclique is κ then mr(G, π, k) = κ.

In the above theorem the graph Gclique will be an n-partite graph. Hence κ ≤ n =

O(|Gclique|/(∆+1)k). As long as we have (∆+1)k = O(log2 n) we can use the approximation

algorithm for MaxClique to get a non-trivial approximation ratio of O(n log logn/ log n).

Proof. Here we give the reduction from MaxRoute to MaxClique. First we augment G by

adding self-loops. Let this new graph be G′. Hence we can make every matching in G′

81

perfect by assuming each unmatched vertex is matched to itself. Observe that any routing

scheme on G′ induces a collection of walks for each pebble. This collection of walks are

constrained as follows. Let Wi and Wj corresponds to walks of pebbles starting at vertices

i and j respectively. Let Wi[t] be the position of the pebble at time step t. They must

satisfy the following two conditions: 1) Wi[t] ̸= Wj [t] for all t ≥ 0. 2) Wi[t + 1] = Wj [t]

iff Wi[t] = Wj [t+ 1]. Now consider two arbitrary walks in G′. We call them compatible iff

they satisfy the above two conditions. We can check if two walks are compatible in linear

time.

Let Wi be the collection of all possible length k walks starting from i and ending at

π(i). Note that |Wi| = O((∆ + 1)k). For each w ∈ Wi we create a vertex in Gclique. Two

vertices u, v in Gclique are adjacent if they do not come from the same collection (u ∈ Wi

then v ̸∈ Wi) and u and v are compatible walks in G′. Clearly, Gclique is n-partite, where

each collection of vertices from Wi forming a block. Furthermore, if Gclique has a clique of

size κ then it must be the case that there are κ mutually compatible walks in G′. These

walks determines a routing scheme (since they are compatible) that routes κ pebbles to

their destination. Now if Gclique has a clique number < κ then the largest collection of

mutually compatible length k walks must be < κ. Hence number of pebbles that can be

routed to their destination in at most k steps will be < κ.

In order to get a non-trivial approximation ratio we require that (∆ + 1)k = O(log2 n)

which implies that the above reduction is polynomial in n. This completes the proof.

82

Chapter 9: Structural Results On Permutation Routing

As we have seen previously, a major focus of research on permutation routing has been

to determine the bounds for the routing numbers of well-studied classes graphs. However,

there are, to our knowledge, very few results based on specific graph properties, such as

connectivity, chromatic number, regularity, forbidden minors etc. One important result

among them is as follows.

A graph G(V,E) is a (n, d, α)-expander if for every X ⊂ V with |X| ≤ n/2 we have

(|N(X)| − |X|)/|X| ≥ α. This condition of the neighborhood size tells us that starting

from any vertex it is possible to reach another vertex quickly via a random walk. Another

important aspect of the expansion property is that it is local. It was shown in [36] that

if a graph is an (n, d, α)-expander then its routing number is bounded by O(d
2

α4 log
2 n). In

the best case scenario, when α = O(
√
d), the routing number O(log2 n). This also tells us

that a graph need not have high degree in order to have a small routing number. In fact it

is easy to construct examples where a graph with lot of edges has a large routing number.

Consider two cliques joined be a single edge and the permutation that moves every pebble

from one clique to the other and vice versa.

9.1 Graph Connectivity

We believe that connectivity properties of a graph play an important role in determine its

routing number. Next discuss some basic notions regarding graph connectivity. We assume

G(V,E) to be a simple undirected graph, |V | = n. Let A,B ⊂ V and E(A,B) ⊂ E be

the set of edges of G whose endpoints lie inside both the sets. If A,B partitions V then

we say E(A,B) is a cut of G. If G is not connected then we define C(G) as the set of

connected components of G. A cut-set of edges (vertices) is defined as a subset of edges

83

(vertices) which disconnects G. We call a pair of edges, vertex disjoint if they do not share

any vertices. Similarly, we define vertex disjoint paths. A pair of paths are edge disjoint if

they do not share any edges.

Definition 9.1. A graph G is h-connected if G is not a clique and the minimum number

of vertices whose removal disconnects G is h.

If G is a clique then it is (n− 1)-connected. Similarly,

Definition 9.2. A graph G is h-edge-connected if we need to remove at least h edges from

G to make it disconnected.

The edge connectivity of a clique is also n− 1.

Like expansion, connectivity is a local property in the following sense. IfG is h-connected

then every induced subgraph G′ will have at least h vertex-disjoint edges in the cut to

G \G′. Intuitively if a graph has a small routing number then it seems it should have good

connectivity and vice-versa. In this chapter we give a result that moves us closer to proving

this fact. On the other hand, it is easy to see that if G does not have good connectivity

then it cannot have a small routing number.

This was proved in [36]. Let C be a cutset of vertices and A,B two components of G

separated by C as seen in Figure 9.1.

Theorem 9.1. [36] If G has partition A,B,C of vertices as shown then

rt(G) ≥ 2

|C|
min(|A|, |B|)

.

This follows from the fact there are at most |C| vertex disjoint paths from A to B via C.

It takes 2 steps to move from A to B via C. If a permutation π requires every pebble

of A to move to B (assuming |A| ≤ |B|) then we need at least 2|A|
|C| steps. Hence, if G is

h-connected, in the worst case |C| = h and min(|A|, |B|) = n/2− h, then rt(G) = Ω(n/h).

A similar result was shown when C is a cutset of edges.

84

A B

C

G

Figure 9.1: A situation where C is a cutset of vertices and sets A,B partitions V \ C.

9.2 Structural Results

First we give a conditional upper bound for the routing number based on vertex connectivity.

We do not believe edge connectivity to be of significant importance with respect to routing

number. This is because a large value of edge connectivity does not necessarily imply many

vertex disjoint paths (where we can routes pebbles in parallel). In fact a large set of edge-

disjoint paths may share many vertices, creating bottlenecks. See for example Figure 9.2

below.

A B

u

Figure 9.2: Although there are 3 edge disjoint paths between A and B all this paths share
the vertex u hence can only be activated (matched) one at a time.

85

Our second result concerns the relation between clique number (size of the largest clique)

and routing number. It is known that having a large clique does not necessarily guarantee

a small routing time for all permutations. On the other hand we know that the complete

bipartite graph, whose clique number is 2, has a constant routing number of 4. Even with

these reservations a determining a relation between clique and routing number is important,

even if to show that a global property like clique number is inadequate in determining the

routing number. We summarize our results of this chapter below:

1. If G is h-connected then G has a routing number of O(nrG).

Here rG = min rt(Gh)/|Gh|, over all induced connected subgraphs |Gh| ≤ h.

2. A connected graph with a clique number of κ has a routing number of O(n− κ).

9.2.1 An Upper Bound For h-connected Graphs

Let Gh be a induced connected subgraph of G having h vertices, we will show rt(G) =

O(n rt(Gh)/h). Hence if G has a h-clique then rt(G) = O(n/h). In fact the result is

more general. If Gh is an induced subgraph with ≤ h vertices such that r = rt(Gh)/|Gh|

is minimized then rt(G) = O(nr).

We use the classical Lovasz-Gyori partition theorem for h-connected graphs for this

purpose:

Theorem 9.2 (Lovasz-Gyori[49]). IfG is a h-connected graph then for any choice of positive

numbers n1, . . . , nh with n1+. . .+nh = n and any set of vertices v1, . . . , vh there is a partition

of the vertices V1, . . . , Vh with vi ∈ Vi and |Vi| = ni such that the induced subgraph G[Vi]

is connected for all 1 ≤ i ≤ h.

We prove a combinatorial result. We have a lists Li, 1 ≤ i ≤ a, each of length b. Each

element of a list is a number c, 1 ≤ c ≤ a. Further, across all lists, each number c occurs

exactly b times.

Lemma 8. Given lists as described, there exists an a× b array A such that the ith row is

a permutation of Li and each column is a permutation of {1, 2, 3, . . . , a}.

86

Proof. By Hall’s Theorem for systems of distinct representatives [50], we know that we can

choose a representative from each Li to form the first column of A. The criterion of Hall’s

Theorem is that, for any k, any set of k lists have at least k distinct numbers; but there are

only b of each number so k−1 numbers can not fill up k lists. Now remove the representative

from each list, and iterate on the collection of lists of length b− 1.

To prove our upper bound we need an additional lemma.

Lemma 9. Given a set S of k pebbles and tree T with k pebbles on its k vertices. Suppose

we are allowed an operation that replaces the pebble at the root of T by a pebble from S.

We can replace all the pebbles in T with the pebbles from S in Θ(k) steps, each a replace

or a matching step.

Proof. Briefly, as each pebble comes from S it is assigned a destination vertex in T , in

reverse level order (the root is at level 0). After a replace-root operation, there are two

matching steps; these three will repeat. The first matching step uses disjoint edges to move

elements of S down to an odd level and the second matching step moves elements of S

down to an even level. Each matching moves every pebble from S, that has not reached

its destination, towards its destination. The new pebbles move without delay down their

paths in this pipelined scheme. (The invariant is that each pebble from S is either at its

destination, or at an even level before the next replace-root operation.)

Theorem 9.3. If G is h-connected and Gh is an induced connected subgraph of order h

then rt(G) = O(n rt(Gh)/h).

Proof. Let Vh = {u1, . . . , uh} be the vertices in Gh. We take these vertices as the set of k

vertices in Theorem 9.2. We call them ports as they will be used to route pebbles between

different components. Without loss of generality we can assume p = n/h is an integer.

Let n1 = n2 = . . . = nh = p and Vi be the block of the partition such that ui ∈ Vi. Let

Hi = G[Vi]. Then for any permutation π on G:

87

1. Route the pebbles in Hi according to some permutation πi. Since Hi has n/h vertices

and is connected it takes O(n/h) matchings. Since we can use a spanning tree Ti of

Hi to accomplish this task.

2. Next use Gh, n/h times, to route pebbles between different partitions. We show that

this can be done in O(n rt(Gh)/h) matchings. (The “replace-root” step of Lemma

9, is actually the root replacements done by routing on Gh.)

3. Finally, route the pebbles in each Hi in parallel. Like step 1, this also can be accom-

plished in O(n/h) matchings.

Clearly the two most important thing to attend to in the above procedure are the permu-

tations in step 1 and the routing scheme of step 2. We can assume that each Hi is a tree

rooted at ui (since each Hi has a spanning tree). Thus the decomposition looks like the one

shown in Figure 9.3.

G[V1]T1

T2

T4

T3

Gh

Figure 9.3: G is decomposed into 4 connected blocks, which are connected to each other
via Gh.

88

The permutation π on G indicates for each element of Hi, which Hj it wants to be

routed to, where j could be i. So each Hi can build a list Li of indices of the ports of Gh

that it wants to route its elements to (again, possibly to its own port). The lists satisfy the

conditions of Lemma 8, with a = h and b = n/h, We will use the columns of the array A to

specify the permutations routed using Gh in step 2. Note that step 1 will need to preprocess

each Hi so that the algorithm of Lemma 9 will automatically deliver the elements of Hi up

to ui in the order specified by the ith row of A.

Once the pebbles are rearranged in step 1, we use the graph Gh to route them to their

destination components. Each such routing takes rt(Gh) steps. Between these routings on

Gh the incoming pebble at any of the port vertices is replaced by the next pebble to be

ported; this requires 2 matching steps as seen in Lemma 9. Hence, after rt(Gh) + 2 steps

a set of h pebbles are routed to their destination components. This immediately gives the

bound of the theorem.

H

v

GnH

Figure 9.4: The clique H has been contracted into a super-vertex v.

89

9.2.2 Relation Between Clique Number and Routing Number

Theorem 9.4. For a connected graph G with clique number κ its routing number is

bounded by O(n− κ).

Proof. Let H be a clique in G of size κ. Let G\H be the minor of G after the contraction

of the subgraph H. Let the vertex that H has been contracted to be v. Further, let T be

a spanning tree of G\H . When routing on G\H we can treat v as any other vertex of G\H .

The situation is shown in Figure 8.4. Taking into account the fact that v can store more

than one pebble internally. When v participates in a matching with some other vertex u

in G\H we assume that exchanging pebbles takes 3 steps. This accounts for the fact that

the pebble thats need to be swapped with the pebbles at u was not on a vertex adjacent to

u in the un-contracted graph G. The basic idea is to break the routing into two steps. In

the first step we simply move all pebbles in v whose final detination is not in v (i.e. not in

un-contracted H) out. For a tree, it is known that [37] we can route a subset of p pebbles

where each pebble needs to be moved at most l distance in ≤ p + 2l steps. Since T has

a diameter at most n − κ and at most min(κ, n − κ) pebbles need to be moved out of v

the first step can be accomplished ≤ 3(n − κ) + O(1) steps. At this point we can employ

any tree routing algorithm on T where we charge 3 time units whenever v is part of the

matching to route all the pebbles in G\H . If we use the algorithm presented in [41], which

requires 3n/2+o(n) steps, then we see that the routing takes at most 15
2 (n−κ)+o(n) steps

for any permutation.

90

Chapter 10: Sorting Permutations and Sorting Number

In this chapter we introduce the well known concept of sorting networks from a new

perspective: as a reconfiguration problem on graphs. Let us first begin with an overview of

sorting networks.

An oblivious sorting algorithm is one that has decided what key comparisons to make

before seeing the input. A sorting network, which typically arises in discussions of par-

allelism, is an oblivious algorithm in which the comparisons are grouped into consecutive

stages, where the comparisons in each stage are disjoint. In the context of permutation sort-

ing, these stages are matchings where we compare the matched pairs and if necessary swap

them. Which vertex to send the lower rank pebble and which to send the higher rank one

induces a direction on edges. Hence we augment our matching model to include a possible

direction for the matched edge. Note that the underlying graph G remain undirected.

Most prior work has regarded all possible pairs as candidates for “comparison-swap

operations,” (i.e., comparators) where we would say the given graph is a complete network.

There is also much work on specific graphs, such as hypercubes, shuffle-exchange graphs,

meshes and linear arrays. On the other hand when general graphs are considered in the past

typically the discussion has assumed sorting algorithms to be distributed and asynchronous.

We strike a new middle ground in allowing the graphs to be arbitrary but synchronous,

allowing a schedule of parallel swaps. The terminology of sorting networks is natural in this

setting. We focus here on general trees since every connected graph has a spanning tree it

is another fundamental case.

We regard a sorting network as a sequence of stages and each stage is specified by a

matching of some pairs of vertices; a comparator is assigned to each matched pair. There

are fixed locations each containing a key (label or rank of a pebble) and comparators look

at the keys at the two locations and swap them if they are not in the order desired by the

91

underlying oblivious algorithm. (A location is a memory location, but often, in diagrams,

it is identified with a set of memory locations connected by wires.) The goal is move the

pebbles to the vertex with the matching label. The depth of a sorting network is the number

of stages.

We study the following restricted variant of sorting networks. We begin by taking a

graph G = (V,E), where the vertices correspond to the locations of an oblivious sorting

algorithm, V = {1, 2, . . . , n}. Let a sorted order of G be given by a permutation π that

assigns the rank π(i) to the vertex i ∈ V . As mentioned before, the keys will be modeled

by labeled pebbles, one per vertex; the label on the vertex indicates the destination vertex,

so if it is labeled k it will be sent to the vertex i with rank k, k = π(i). This is slightly

different from how used labels for permutation roting. However assigning a rank to a vertex

(in addition to its label) allows more constrained subproblems. In simple situations π is the

identity permutation, so we just send the pebble labeled i to vertex labeled i. The edges of

G represent pairs of vertices where the pebbles can be compared and/or swapped. Given a

graph G the goal is to design a sorting network that uses only the edges of G. We formally

define such a sorting network.

We use matchings of the graph to represent the swaps that are to be done in parallel. Of

course matched edges are vertex disjoint. Usually the matched edges are directed, indicating

which vertex is to receive the minimum of the two pebbles, with the maximum going the

other way. Sometime a matched edge will be undirected indicating the two pebbles are

swapped regardless. The reason for this is that when the graph is sparser some of the

sorting effort is routing pebbles to a point where they are adjacent and can be compared.

Definition 10.1 (Sorting Network on a Graph). A sorting network is a triple S(G,M, π)

such that:

1. G = (V,E) is a connected graph with a bijection π : V → {1, . . . , n} specifying the

sorted order on the vertices. Initially, each vertex of G contains a pebble having some

value.

92

2. M = (M1, . . . ,Mt) is a sequence of matchings in G, for which some edges in the

matching are assigned a direction. Sorting occurs in stages. At stage i we use the

matching Mi to exchange the pebbles between matched vertices according to their

orientation. For an edge −→uv, when swapped the smaller of the two pebbles goes to u.

If an edge is undirected then the pebbles swap regardless of their order.

3. After t stages the vertex labeled i contains the pebble whose rank is π(i) in the sorted

order. We stress that this must hold for all (n!) initial arrangement of the pebbles.

|M| is called the depth of the network.

Definition 10.2 (Sorting Number). Sorting number st(G) of a graph G is defined to be

minimum depth of any sorting network S(G,M, π), where M and π are free variables. Ad-

ditionally, st(G, π) is the sorting number of G over all possible sorting networks S(G,M, π),

where M is a free variables but π is a fixed sorted order.

Note that if G is connected then there exists a spanning tree T of G and st(G) ≤ st(T).

We start by briefly restating some results from the oblivious sorting literature on specific

graphs. This will provide a better context for the proposed framework, which unifies these

previous results as special case of graph reconfiguration. Given below in Figure 10.1 is an

illustration of a sorting network for a given tree.

The path graph Pn is the simplest tree case. We know that st(Pn) = 2n. This follows

from the fact that the classical odd-even transposition sort (OETS) [51] takes 2n matching

steps and that it is known to be optimal. Some known bounds for the sorting numbers of

common graphs are summarized in Table 10.1. The Ajtai-Komlos-Szemerdi (AKS) sorting

network [52] directly gives an upper bound ofO(log n) for the sorting number of the complete

graphKn. In this case there is a matching lower bound. For the n-cubeQn (with 2n vertices)

we can use Batcher’s bitonic sorting network, which has a depth of O((log n)2) [53]. This

was later improved to 2O(
√
log logn) log n by Plaxton and Suel[54]. We also have a lower

bound of Ω(logn log logn
log log logn) due to Leighton and Plaxton [55]. For the square mesh Pn × Pn

93

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

(a) (b)

Figure 10.1: Figure (b) corresponds to a sorting network (not necessarily of optimal depth)
for the tree given in (a). Here π is the identity permutation. Every comparator, given by
vertical segments (all directed upwards) joining two wires, always conform to the edges of
the tree.

it is known that st(Pn × Pn) = 3n + o(n), which is tight with respect to the constant

factor of the largest term. This follows from results of Schnorr and Shamir [56], where they

introduced the 3n-sorter for the square mesh. We also have a tight result for the general

d-dimensional mesh of Θ(dn) due to Kunde [57]. These results are, in fact, more general,

as they apply to meshes with non-uniform aspect ratios.

Table 10.1: Known bounds on the sorting numbers of various graphs

Graph Lower Bound Upper Bound Remark

Complete Graph (Kn) log n O(log n) AKS Network [52]

Hypercube (Qn) Ω(logn log logn
log log logn) 2O(

√
log logn) log n Plaxton et. al[54, 55]

Path (Pn) n− 1 n OETS. [51]

Mesh (Pn × Pn) 3n− 2
√
n− 3 3n+O(n3/4) Schnorr & Shamir [56]

d-dimensional Mesh Ω(dn) O(dn) Kunde [57]

Our sorting network, when it uses undirected edges, uses the permutation routing model

to move pebbles around in the graph when we know where we want them to go (i.e. without

making comparisons). Since comparisons can only be done at adjacent vertices, we use

routing to move pebbles towards other pebbles. In particular, routing will always be done

for some permutation τ , which does not depends on the label value of the pebbles, but

94

the rank of the vertices. Hence, these routing steps preserve the oblivious nature of our

algorithm.

10.1 Some Additional Results On Routing

In this section we present some additional properties of permutation routing, which we will

use later in our discussion on sorting. We start this section with the following simple lemma.

Lemma 10. For any graph G and any order π of the vertices of G it holds that

rt(G) ≤ st(G, π) ≤ st(G) + rt(G).

Proof. We show first that rt(G, σ) ≤ st(G, π) for any two permutations π, σ of the vertices.

Indeed, suppose that the keys of the pebbles are {1, . . . , n}. For all i ∈ V place the pebble

ranked i in the vertex σ−1(π−1(i)). Then there exists a sorting network of depth st(G, π)

that sends the pebble ranked i to the vertex π−1(i) for all i ∈ V . That is, the pebble from the

vertex j = σ−1(π−1(i)) is sent to the vertex π−1(i) = σ(j). Therefore, rt(G, σ) ≤ st(G, π)

for all permutations σ, and thus rt(G) ≤ st(G, π).

For the upper bound let S(G,M, τ) be a sorting network on G of depth st(G) = st(G, τ).

We use τ to create another sorting network S(G,M′, π) of depth at most st(G) + rt(G).

This is done in two stages. First we apply the sorting network S(G,M, τ). After this stage

we know that the pebble at vertex i has a rank τ(i). Next, we apply a routing strategy

with at most rt(G) steps that routes to the permutation π−1 ◦ τ , i.e., sending a pebble in

the vertex i to π−1(τ(i)) for all i ∈ V . After this step the vertex i contains the pebble of

rank π(i). This proves that st(G, π) ≤ st(G) + rt(G).

The above lemma implies that if we construct a sorting network for an arbitrary sorted

order on the vertices then we suffer a penalty of rt(G) on the depth of our network as

compared to the optimal one.

95

10.1.1 Routing on subgraphs of G

Below, we study the notion of routing a subset of the pebbles to a specific subgraph. We

start with the following lemma, which is from [58].

Lemma 11. Let T be a tree with diameter d, and let P be a path of length d in T . We

can route any set of d pebbles to P in 3d− 2 steps.

Proof sketch. The proof is done via induction on the number of pebbles to move. The basic

idea is that after some initial delay we can pipeline the movement of pebbles so that at each

time step sufficiently many pebble can reach P .

Next we discuss the question of partial routing, where only a small number of pebbles

are required to reach their destination. These results we found to be of independent interest.

Definition 10.3. Given a graph G = (V,E) let A,B ⊂ V be two subset of vertices with

|A| = |B|, not necessarily distinct. Let πAB be a bijection between A and B. Routing of

the pebbles from A to their respective destinations on B given by πAB is a partial routing

in G, where each pebble in a ∈ A is required to reach πAB(a) ∈ B using the edges of G

(and there are no requirements on the pebbles outside A). Further,

1. Let rt(G,A,B, πAB) be the minimum number of matchings needed to route every

pebble a ∈ A to πAB(a) ∈ B using the edges of G.

2. Let rt(G,A,B) = maxπAB rt(G,A,B, πAB).

3. For U ⊆ V let rtU (G) = maxA⊆V rt(G,A,U).

4. For p ∈ [1 . . . |V |] let, rtp(G) = maxA,B⊂V,|A|=|B|≤p rt(G,A,B)

Clearly, for any connected n-vertex graph G we have rt(G) = rtn(G). Some of the

bounds for rt(G) also holds for rtp(G). For example, rtp(G) ≥ d, where d is the diameter

of G. Furthermore, rtp(G) = Θ(rt(G)) for any p if and only if rt(G) = Θ(d). We

illustrate rtp(G) by computing it explicitly for some typical graphs. Recall from [36] that

96

rt(Kn) = 2. It is easy to see that rtp(Kn) = 2 for all p ≥ 3, and rt2(Kn) = 1. For the

complete bipartite graph we have rtn/2(Kn/2,n/2) = 2 and is rtp(Kn/2,n/2) = 4 for p > n/2.

Theorem 10.1. For any tree T with diameter d, rtp(G) = O((d+ p)min(d, log n
d)).

Proof. The proof is similar to the proof used in [36] for determining the routing number of

trees. Let r be the centroid whose removal disconnects the tree into a forest of trees each of

which is of size at most n/2. Let (T1, . . . , Tr) be the set of trees in the forest, with r ∈ T1.

For a tree Ti let Si be the set of “improper” pebbles that need to be moved out of Ti. All

other pebbles in Ti are “proper”. In the first round we move all the pebbles in Si as close

to the root of Ti as possible, for all i. Using the argument used in [36] it can be shown

that for a tree with diameter d this first phase can be accomplished in c1d steps for some

constant c1. First we label each node in Ti as odd or even based on their distance from ri,

the root of Ti. In each odd round we match nodes in odd layers with proper pebbles to

one of its children containing an improper pebble if one exists. Similarly, in even rounds

we match nodes in even layers with proper pebbles to one of its children containing an

improper pebble if one exists. Since T has diameter d any path from ri to some leaf must

be of length at most d− 1. Now consider an improper pebble u initially at distance k from

the root. During a pair of odd-even matchings either the pebble moves one step closer to

the root or one of the following must be true: (1) another pebble from one of its sibling

node jumps in front of it or (2) there is some improper pebble already in front of it. It

can then be argued (we omit the details here) that after c1d matchings for some constant

c1 if u ends up in position j from ri then all pebbles between u and ri must be improper.

Next we exchange a pair of pebbles between subtrees using the root vertex r, since at most

p/2 pairs needs to be exchanged, the arguments used in [36] can be modified to show that

this phase also takes c2p steps for some constant c2. After each pebble is moved to their

corresponding destination subtrees we can route them in parallel. Noting that each tree Ti

has diameter at most d− 1. Hence we have the following recurrence:

T (n, d, p) ≤ T (n/2, d− 1, p) + c1d+ c2p (10.1)

97

where T (n, d, p) is the time it takes to route p pebbles in a tree of diameter d with n

vertices. Taking T (·, d, p) = O(d), and solving equation (9.1) gives the stated bound of the

lemma.

10.2 General Upper Bounds on st(G)

The AKS sorting network can be trivially converted into a network of depth O(n log(n))

by making a single comparison in each round. However, it is not clear a priori whether for

any graph there is a sorting network of depth O(n log(n)). We show later that this bound

indeed holds for all graphs.

We relate the sorting number of a graph to its routing number and the size of its

maximum matching.

Theorem 10.2. Let G be an n-vertex graph with routing number rt(G) and a matching

of size ν(G). Then st(G) = O
(
n log(n) · rt(G)

ν(G)

)
.

Proof. We prove the theorem by using G to simulate the AKS sorting network on the

complete graph Kn of depth O(log(n)). Specifically, we show that each stage (a matching)

of the sorting network on Kn can be simulated by at most O(n
ν(G) rt(G)) stages (matchings)

in G. Let M be a matching at some stage of the AKS sorting network on the complete

graph. We simulate the compare-exchanges and swaps in M by a sequence of matchings

in G as follows. First we partition the edges in M into t = ⌈n/ν(G)⌉ disjoint subsets

M = M1 ∪ · · · ∪Mt, where |Mi| = ν(G) for all except maybe the last set Mt, which can be

smaller. Let MG be a maximum matching in G. Corresponding to each pair (u, v) ∈ Mi

we pick a distinct pair (u′, v′) ∈ MG, this can always be done since the sets Mi and MG

are of the same size. Note that the pair (u, v) may not be adjacent in G, and so, we route

each pair (u, v) ∈ Mi to its destination in (u′, v′) ∈ MG. This can be done in rt(G) steps,

where each step consists of only undirected matchings. Once the pairs have been placed

into their corresponding positions we relabel the vertices such that the pair labeled (u′, v′)

98

is now (u, v). Unmatched vertices keep their label. Since the pairs in Mi are now adjacent

in G we can perform the compare-exchange or swap operation according to Mi. Therefore,

the total number of matchings to execute the ith set of compare-exchanges and swaps in

Mi is rt(G) + 1 in G. We remark that the routing maintains the oblivious nature of the

network, and the swaps made while routing, are data independent. We can then reverse the

oblivious routing that set up the exchanges for Mi. The set up for Mi+1 invokes routing

a different permutation. Note that the two phases of oblivious routing can be combined

by using the composition of the two permutation. This implies that we can simulate M

using at most (rt(G) + 1) · t = O(n
ν(G) · rt(G)) matchings in G. Therefore, since the

depth of the AKS sorting network on the complete graph Kn is O(log(n)), we conclude that

st(G) = O(n log(n) · rt(G)
ν(G)), as required.

In the following theorem we upper bound st(G) for graphs G that contain a large

subgraph H whose st(H) is small. This result will later be used to bound sorting number

of a tree with given diameter.

Theorem 10.3. Let G be an n-vertex graph, and let H be a vertex-induced subgraph of

G on p vertices. Then st(G) = O
(
n
p log(

n
p) · (rt(G) + st(H))

)
.

Specifically, we will prove that if H be a vertex-induced subgraph of G on p vertices then

st(G) = O
(
n
p log(

n
p) · (rtH(G) + st(H))

)
, where rtH(G) bounds the number of matchings

required to route any set of p vertices to H. (Here we slightly abuse the notation from

Definition 10.3, by identifying the subscript in rtH(G) with the vertex-set of H.) Later we

will use this result to prove Theorem 10.4.

Proof. Let us partition the vertex set V of G into q = ⌈n/⌊p/2⌋⌉ parts V = A1∪· · ·∪Aq in a

balanced manner (i.e., the size of each Ai is either ⌊n/q⌋ or ⌊n/q⌋+1). Note that |Ai|+ |Aj |

could be less than p. However it is always possible to modify an existing sorting network

to sort a subset of elements in the same number of stages. Let Kq be a complete graph

99

whose vertices are identified with {A1, . . . , Aq}, and let S be an oblivious sorting algorithm

with O(q log q) comparisons on the complete graph Kq. (Here the sequence of comparisons

is performed sequentially, not in parallel.) In an ordinary sorting network in each step we

perform a compare-exchange or a swap between two matched vertices (i, j) so that if i < j,

then the pebble in the vertex i will be smaller than the pebble in j We will simulate S on G

using a sorting network on H by sorting in each stage the elements in Ai ∪Aj . That is, for

i < j we are going to sort the elements in Ai ∪Aj so that all the elements of Ai are smaller

than every element of Aj , and the elements within each subset are internally sorted. This

is done using an optimal sorting network in H, which we will denote by SH .

We can simulate any such compare-exchange inG between pairs of sets inA inO(rt(G)+

st(H)) steps. Indeed, suppose the kth round in S compares the vertices i < j. In order to

simulate this comparison we first route all the pebbles in Ai ∪ Aj to the subgraph H and

relabel the vertices. This relabeling is done so that we can keep track of the vertices when

sorting H. Then we use SH to sort Ai ∪ Aj which takes st(H) steps. Once the sorting is

done we split up the sets again and appropriately relabel the vertices so that the first |Ai|

vertices in the sorted order on H will now belong to Ai and the next |Aj | vertices will belong

to Aj . If instead the kth comparison is actually a swap then we simply swap the labels of

the multisets (Ai is labeled Aj and vice versa). Hence performing the above simulation

takes O(rtH(G) + st(H)) steps per compare exchange or swap operation, which gives the

result of the theorem.

In the proof of Theorem 10.3 above we only used an oblivious sorting algorithm with

O(q log q) comparisons on the complete graph Kq, and did not use the fact that the com-

parisons can be done in parallel, e.g., using the AKS sorting network. This is because

Theorem 10.3 only assumes that there is one subgraph H with small st(H). If instead

we assumed that there are many such subgraphs, then we could sort the Ai’s in different

subgraphs in parallel. This is described in the corollary below.

Corollary 3. (Due to Shinkar[59]) Let G = (V,E) be an n-vertex graph. Let V = V1 ∪

100

· · · ∪ Vq be a partition of the vertices, with |Vi| = n/q for all i ∈ {1, . . . , q}, such that Hi,

the subgraph induced by Vi, is connected for each i ∈ {1, . . . , q}. Then

st(G) = O

(
log(q) · (rt(G) + max

k∈{1,...,q}
{st(Hk)})

)
.

Proof sketch. The proof uses the same idea that Theorem 10.3. We start by partitioning

the vertex set V of G into 2q parts V = A1 ∪ · · · ∪ A2q of equal sizes. Then, we simulate

oblivious sorting algorithm on K2q with the sets Ai. The only difference is that instead of

an oblivious sorting algorithm with O(q log(q)) comparisons on the complete graph K2q we

use the AKS sorting network on 2q vertices of depth O(log(q)). In each round of the sorting

network there are at most q comparisons, and the corresponding sorting of Ai ∪Aj can be

performed in parallel, one in each Hk in time st(Hk).

Theorem 10.4. Let G be an n-vertex graph, and suppose that G contains a simple path of

length d. Then st(G) = O(n log (n/d)). In particular, for every n-vertex graph G it holds

that st(G) = O(n log(n)).

Proof. It is easy to see that if G contains a simple path of length d, then G has a spanning

tree T with diameter at least d. The proof follows easily from Theorem 10.3 and Lemma 11.

Indeed, in the setting of Theorem 10.3, let H be a path of length d in T . Then st(H) = d.

By Theorem 10.3 if any set of d vertices can be routed to H in r steps, then st(T) ≤

O(nd log(
n
d) · (r + st(H))). By Lemma 11 we have r = O(d), and thus st(G) ≤ st(T) =

O(n log(n/d)).

Theorem 10.5. LetG be an n-vertex graph with maximal degree ∆. Then st(G) = O(∆n).

This result was proven in [58], who proved that the acquaintance time of a G, is upper

bounded by 20∆n. Let T be a spanning tree of G with maximum degree ∆. The basic idea

is to use an n round sorting network for Pn (such as OETS [51]), and simulate this network

in T with an overhead that depends only on ∆. This is done via walking along a contour

101

P2n−3 of T with n vertices (Figure 10.2). A contour of a tree is a cycle that visits every

edge exactly once and every vertex as often as its degree. The δ fact comes from the fact

that two odd or two even edges in the path which shares the same copy of a vertex of T

cannot be matched in the same routing step.

1

2 3 4

5

6

7

8 9

10

11

12

T

Figure 10.2: In the tree above, rooted at vertex labeled 1, the dotted line traces
a contour for the tree. The contour represented by a path consists of the fol-
lowing sequence of vertices from T and their duplicates (indicated by crosses):
(11, a1, 61, 21, 71, 22, 81, 23, a2, 31, 91, a3, a4, 12, 101, 41, 13, 51, 111, 52, 121, a5, a6), Where ij is

the jth copy of vertex labeled i and ak’s are additional vertices indicated by small red dots.

10.3 Bounds on Concrete Graph Families

Below we state several results concerning the sorting time of some concrete families of

graphs.

Proposition 2 (Tree). For a tree with diameter d and maximum degree of ∆ we have,

st(T) = O(min (log n
d),∆n).

102

Proof. This immediately follows by combining the results from Theorem 10.4 and Theo-

rem 10.5.

This result is optimal when T is a star, as it requires at Ω(n log n) stages to sort in a star.

It is also optimal for a path, trivially. We believe that the optimality holds asymptotically

for arbitrary trees. However, this result is non-constructive, as it does not give an actual

sorting network for trees. In the next chapter we will construct an actual sorting network

but with an worse bound on the depth.

Proposition 3 (Complete p-partite graph). LetG be the complete p-partite graphKn/p,...,n/p

on n vertices. Then st(G) = Θ(log n).

Proof. The lower bound is trivial. For the upper bound note that Kn/p,...,n/p contains

the bipartite graph K⌊ p2⌋np ,⌈ p2⌉np . In particular, it contains a matching of size ν(G) =

⌊p
2

⌋
·n/p. Therefore, by Theorem 3 in [36] and the remark after the proof, we have rt(G) ≤

rt(K⌊ p2⌋np ,⌈ p2⌉np) ≤ 2

⌈
⌈ p2⌉
⌊ p2⌋

⌉
+ 2 ≤ 6, and hence by Theorem 10.2 it follows that st(G) ≤

O(log(n)).

A graph G is said to be a (n, d, λ)-expander if it is a d-regular graph on n vertices and

the absolute value of every eigenvalue of its adjacency matrix other than the trivial one is

at most λ. In Chapter 6 we defined expanders using the expansion coefficients instead, but

both of these definitions are equivalent.

Proposition 4 (Expander graphs). Let G be an (n, d, λ)-expander. Then,

st(G) ≤ O(
d3

(d− λ)2
log3(n)).

In particular, if λ < (1− 1
logc(n))d, then st(G) ≤ O(d · log2c+3(n)).

Proof. Recall from [36] that if G is an (n, d, λ)-expander, then rt(G) = O
(

d2

(d−λ)2
log2(n)

)
.

103

Therefore, since any d-regular graph contains a matching of size n/2d it follows from The-

orem 10.2 that st(G) ≤ O(d3

(d−λ)2
log3(n)).

A graph G = (V,E) is said to be vertex transitive if for any two vertices u, v ∈ V , there

is some automorphism1 f : V → V of the graph such that f(u) = v.

Proposition 5 (Vertex transitive graphs [59]). Let G be a vertex transitive graph with n

vertices of degree polylog(n). Then the diameter of G, given by dG = O((log n)c1) if and

only if st(G) = O((log n)c2), where c, c2 are constants

Proof. It is trivial that dG ≤ st(G), where dG is the diameter of G. For the other direcion,

Babai and Szegedy [60] showed that for vertex-transitive graphs if the diameter of G is

O((log n)c), for some constant c, then its vertex expansion rate is Ω(1/(log n)c). Therefore,

λ ≤ d(1 − 1/(log n)c), where d = O((log n)c) is the degree of the graph. Therefore, by

Proposition 4 we have st(G) = O((log n)c).

Since all Cayley graphs are also vertex transitive, the above bound is applicable to them

as well.

Next we bound the sorting number of Cartesian product of two graphs in terms of its

components.

Proposition 6. Let G1 = (V1, E1), G2 = (V2, E2) be two graphs and G = G1□G2. Then

st(G) ≤ O(min(log |V1|(rt(G) + st(G2)), log |V2|(rt(G) + st(G1))).

Proof. We will prove this in terms of rt(G), and then use Theorem 4 in [36] saying that

rt(G) ≤ min{rt(G1), rt(G2)}+ rt(G1) + rt(G2)

Since G has |V1| vertex disjoint subgraphs that are copies of G2 we can apply Corollary 3

1A mapping f : V → V is an automorphism of G = (V,E) if for all v1, v2 ∈ V it holds that (v1, v2) ∈
E ⇔ (f(v1), f(v2)) ∈ E

104

G = G1

G2

G1

b1 b2 b3 b4 b5

a1

a2

a3

a4

A1

A2

A3

A2

G2

Figure 10.3: The Cartesian product graph G = G1□G2. The rows highlighted by blue
regions represents copies of G2.

with these q = |V1| subgraphs and all Hi being isomorphic to G2. Therefore, we get

st(G) ≤ O(log(|V1|) · (rt(G)+st(G2)). The bound st(G) ≤ O(log(|V2|) · (rt(G)+st(G1))

follows using the same argument by changing the roles of G1 and G2.

As an example of an application of the above corollary consider the d-dimensional mesh

Mn,d with nd vertices. We know that rt(Mn,d) ≤ 2dn since Mn,d = Mn,d−1×Pn. Therefore,

st(Mn,d) ≤ O(log(nd−1) · (rt(Mn,d)+st(Pn))) = O(dn log(n)). Although this bound is not

optimal (it is known [57] that st(Mn,d) = O(dn)), we still find this example interesting.

105

Chapter 11: Sorting Network On Trees

In this chapter we present an oblivious sorting algorithm for trees. Our OddEvenTreeSort is

a natural generalization of the classical OETS algorithm, but it will be explained without

reference to OETS. First recall the following fact about trees: for any tree T with n vertices

there exists a vertex r whose removal produces connected components of size ≤ n/2 (i.e., r

is a centroid). We root T at r, which we assume has d children, see Figure 11.1. Let the

subtree Ti, rooted at ai, have ni ≤ n/2 nodes. Further, every node in Ti has at most βi

children. Further, assume the subtrees are arranged in descending order according to their

size from left to right (n1 ≥ n2 ≥ . . . ≥ nd). Define T ′
i to be T1 ∪ {r}, rooted r. The sorted

order π(T) is defined recursively as follows.

1. T ′
1 will have the n1 + 1 smallest pebbles.

2. The tree Ti has pebbles whose ranks (labels) are between
∑i−1

j=1 nj + 2 to
∑i

j=1 nj + 1.

3. Labeling of each subtree Ti (or T ′
1) is defined recursively based on an appropriately

chosen root ri which partitions Ti in a balanced manner.

We call this the multi-root pre-order (MP) sorted order. While ai is the root of the subtree

Ti of T , from the viewpoint of r each ri is in the interior of Ti. However the “root” ri of Ti

is determined for each i after detaching Ti and rerooting it; so it is usually not ai. Given a

tree this ordering can be easily precomputed and it is fixed afterwards. Furthermore once

we have our sorting network, using Lemma 10 we can easily create another sorting network

with a more natural ordering 1 using an additional O(n) steps.

1For example we can use the pre-order ranks of the vertices in T as our sorted order.

106

r

T1 T2

Td

n=2 ≥ n1 ≥ n2 ≥ : : : ≥ nd

T

a1 a2 ad

Figure 11.1: A balanced decomposition of a tree.

Algorithm 2: OddEvenTreeSort(T, r)

Input : T with root r

Output: Pebbles are sorted according to an MP sorted order

1 begin

2 if |T | == 1 then

3 return

4 for i from 1 to d− 1 do

5 for j from 1 to d− i do

6 k ← ni+j ; Heap
↑(T ′

j); Heap
↓(Tj+1); Swap(T

′
j , Tj+1, k);

7 pardo i from 1 to d do

8 if i == 1 then

9 OddEvenTreeSort(T ′
1, r1)

10 else

11 OddEvenTreeSort(Ti, ri)

The OddEvenTreeSort(T, r) has two main phases. The first phase (lines 4-6) uses the

subtrees as buckets to partition the pebbles such that T ′
1 gets the first n1 + 1 smallest

pebbles, T2 the next n2 smallest pebbles and so on. The second phase (lines 7-11) calls

107

OddEvenTreeSort(Ti, ri) recursively for all the subtrees T ′
1, T2, . . . , Td. Sorting on these sub-

trees happens in parallel. Let the number of matchings needed to partition the pebbles

during the first phase be S(T, r). Then the total number of stages in OddEvenTreeSort is

given by the following recurrence:

C(T) = S(T, r) + max(C(T ′
1),max

i
C(Ti)) (11.1)

For the first phase, there are d − 1 passes. In each pass, since any movement between

the subtrees must use the root r, we route the pebbles between each pair of consecutive

subtrees, one after the other. We take a pair of consecutive subtrees and move the pebbles

so that each pebble in T ′
j = Tj ∪ {r} is not larger than any pebble in Tj+1. We do this in

three steps. First we make T ′
j into a max-heap with Heap↑(T ′

j).
2 Second we make Tj+1

into a min-heap with Heap↓(Tj+1), which is just a minor variation of the first procedure.

Third we use the procedure Swap(T ′
j , Tj+1, k) which moves, through r, the smallest pebbles

of Tj+1 into T ′
j , while moving the largest pebbles of T ′

j into Tj+1. The parameter k is used

to bound the number of pebbles that move between trees in Swap.

We describe these three steps in line 6 in the context illustrated in Figure 11.2, where

the two subtrees Ti and Tj are connected via r, for arbitrary i and j.

Lemma 12. The OddEvenTreeSort(T, r) procedure is correct.

Proof. We begin by assuming k = n and then show the smaller k large enough. We also

assume the correctness of Heap and Swap, which are shown below. Therefore the (sequence

in step 6 in Algorithm 2) Heap↑(T ′
j); Heap

↓(Tj+1); Swap(T
′
j , Tj+1, k) will have the effect of

moving the largest k pebbles into Tj+1 from amongst the pebbles originally in Tj , Tj+1 and

r. Now consider when i = 1 and recall the sizes are nonincreasing. As j increases it is

2A textbook (max) heap, maintains the heap-ordering property of having no child larger than its parent..

108

Ti Tj

ai ajr

e o

Tij

T
0

i

Figure 11.2: Pair of subtrees joined at the root r. The e/o labels indicate parity.

inductively true that Tj+1 will contain the largest nj+1 pebbles from amongst the pebbles

originally in T1, T2, . . . Tj+1 and r. So after d− 1 iterations, Td already contains the correct

set of pebbles, in some order. Similarly when i = 2 after d− 2 iterations Td−1 will contain

the correct set of pebbles. And so on.

But when k is limited Swap does less work. We need to show that for any i and j that

only the ni+j smallest pebbles from Tj+1 might need to move into T ′
j ; the remainder need

not even be considered. We prove this by induction on i and on j. When i = 1 clearly

ni+j = nj+1 is enough for all j, since that is the size of Tj+1. Consider the pass with i = l+1

and assume that during pass l only nl+j needed to pass from Tj+1 to T ′
j . On the previous

pass, when j = 1, T2 gave up to T ′
1 every pebble it needed to, T3 then dumped at most nl+2

new pebbles into T2. So at most n(l+1)+1 will need to be given up from T2 to T ′
1 during

pass l + 1. As j increases, holding i = l + 1, the inductive proof continues to hold.

To explain Heap↑(T ′
j) we first explain a purely sequential algorithm for max-heap con-

struction. This is not the normal textbook approach since there are faster sequential al-

gorithms. We label the nodes in T ′
j according to a breadth-first (BF) order, with the root

labeled 0. The heap building proceeds in a sequential manner visiting the nodes in BF

order, starting at node 1. When we visit node i we let it bubble up the path to the root,

continuing to swap with its parent if it is larger, or until it reaches the root. It is invariant

that the subtree containing the nodes 0 up to i will form a max-heap. To parallelize this

109

we will pipeline the bubble-up processes.

The Heap↑(T ′
j) procedure works as follows; the min-heap version is symmetric. When

we visit node i we initiate a sequence of matched edges, going up the path to the root. If

node i + 1 is on the same level as node i then node i + 1 does not initiate its traversal of

the path to the root until it has idled for one stage. If node i+ 1 is on the next level then

node i + 1 does not idle before initiating its path. This insures that when node i + 1 uses

an edge on, say, level l then node i will already be using an edge on level l − 2; similarly

progress up one path will be pipelined with progress up another path. It follows that it is

invariant that:

(a) at each level of the tree, during any stage, there is at most one edge being matched,

and

(b) there are never two adjacent levels containing matched edges.

Therefore matched edges in all these paths will always be disjoint.

Lemma 13. The Heap↑(Tj) procedures is correct and requires at most 3nj stages. Similarly

for Heap↓(Tj).

Proof. The correctness would follow from the correctness of the sequential algorithm except

for work up one path may interfere with work up another path. Consider the pebbles starting

up from nodes i and j, i < j. Due to the pipelining, the pebble starting at i will stay at

a level above the pebble from j as long as it is moving up its path Pi. If it stops moving

it is because it is (by induction) less than all the pebbles above it on Pi. Now suppose the

pebble from j moves into the path Pi (at node k, the least common ancestor of i and j).

If it moves into Pi it will only be because it is replacing a pebble on Pi by a larger pebble.

If this new pebble happens to be larger than its parent in Pi, the pebble will immediately

repair that by continuing up the remainder of Pi since Pi and Pj coincide between node k

and the root.

Note that it follows inductively that the node i initiates its pebble’s upward movement

after at most 2i stages, and that it moves up without any further delays until it stops. The

110

run-time follows since the final initiation of a path is from the node nj−1 and the final path

is finished before nj additional stages have passed, because every path length is bounded

by nj .

The Swap(Ti, Tjk) procedure works as follows. Note that in Figure 11.2 the edge (a1, r)

is marked as even, while the edge (r, a2) is marked as odd. From these we can designated

every edge in Tij , in alternating layers,as odd or even. Assume that a2 contains the smallest

pebble in Tj and r contains the largest in T ′
i . The two roots of T ′

i and Tj , r and aj are

connected by an odd edge. We call (r, a2) the crossing edge and it is oriented so that r

receives the minimum. A single compare-swap on the crossing edge is understood as doing:

(a) an Extractmax from T ′
i followed by an insert-at-root for Tj , and

(b) an Extractmin from Tj followed by an insert-at-root for T ′
i .

These are the standard textbook heap operations. Another textbook operation, Heapify,

restores the heap-ordering property to any max-heap after the pebble at its root, say t, is

changed (by a swap simulating an insert-at-root operation). The normal sequential algo-

rithm works by finding the root t′ of its child subtree with largest pebble. If the pebble at t′

exceeds the pebble at t then t and t′ are swapped and recursively we Heapify the subtree

rooted at t′ (since it has a new pebble at its root). (Min-heaps are, again, symmetric.)

We will implement Heapify on Ti in a parallel fashion by fanning-out through the tree.

Since our algorithm must be oblivious we will Heapify all the subtrees of r in parallel,

after sequentially giving every child of r a chance to swap with r, if it is larger. Unlike the

sequential algorithm the root r can be replaced (increased) several times while polling its

children. As a result several subtrees can have a new (smaller) pebble at the root. But we

will recursively Heapify all of r’s subtrees so it does not matter which subtrees have new

roots. For the second level all of r’s children will, in parallel, sequentially match with their

children at the next level. Recall βi is the largest number of children out-degree (out-degree

or arity) of any node in Ti. If we force the matching of parents to children across one level

to take βi stages then every parent will have enough time to talk to every one of its children;

111

if a parent has α < βi children it will idle for βi−α stages. (We can easily reduce the idling

but it will have no effect on the worst-case analysis.) We continue descending, doing one

level at a time. Because of the fanning-out the new pebble at the root could take any path

towards a leaf, in the same way that the sequential algorithm can. The correctness of this

algorithm is clear from its recursive description. However the external observer watching it

execute, sees a wave of fan-outs descending one level at a time, spending βi time at each

level.

Our Swap(T ′
i , Tjk) method (see Algorithm 3) connects the ideas above. During the first

stage it will use the crossing edge and repeat that every 2β time steps thereafter; where

β = max(βi, βj). This swap will initiate both a max-Heapify in T ′
i and a min-Heapify in

Tj . As we have seen above both operations will be implemented as a wave of fan-outs on

subsequent levels, going away from r and a2. In particular it will use β stages on the first

even level, then β stages on the next odd level, then that many on the next even level, and

so on down to the leaves.

However note that the crossing edge will swap again during stage 1 + 2β which will

initiate two new Heapifys. The reason that this can be done before the previous Heapifys

are finished is that the new Heapifys will initiate new waves that will follow the previous

waves in a pipelined way. Recall that all layers will be synchronized since each will take

exactly β stages.

Algorithm 3: Swap(T ′
i , Tj , k)

Input : max-heap T ′
i and min-heap Tj and parameter k

Output: Tj contains the largest pebbles and heap-ordering is restored

1 begin

2 β = max(βi, βj)

3 repeat 2k times do

4 in β stages compare-swap every odd edge once

5 in β stages compare-swap every even edge once

112

While the algorithm appears to be related to the odd-even transposition sort, it is

actually understood to be a sequence of k pairs of Heapifys executing in a pipelined

fashion. The last pair of Heapifys are initiated from r and a2 after 2kβ + 1 stages and

they will be finished after less than 2kβ more stages. Recall that we have already proven

that when the algorithm is invoked that k will be larger than the number of pebbles that

need to leave Tj and enter T ′
i , and vice versa.

Lemma 14. The procedure Swap(Ti, Tj ; k) is correct, and uses 4kβ time steps.

Proof. Note the we have argued that the Heapify procedures are correct. Further it is

clear that subsequent Heapifys in the same tree can be pipelined since they are all using

even levels simultaneously followed by all using odd levels. Also, doing compare-swaps at

some level not needed by Heapify is of no concern since all such comparisons will never

result in a swap. (The algorithm could do fewer operations but, again, it has no effect on

the worst-case run-time.)

By the definition and correctness of the Heapify operations, it follows that the k

smallest pebbles can be transferred over to T ′
j . Of course, if fewer than k pebbles need to

move the subsequent compares will not result in swaps. Similarly for the k largest pebbles

in T ′
i . Also note that pipelining will never be needed at a level deeper than level k in either

tree, since no new pebbles will ever intrude that deep. (As written the algorithm might do

useless operations at deeper levels.) So the last Heapifys initiated by the crossing edge

need only propagate for k levels.

Lemma 15. The bound on the total number of stages for the first phase is

S(T, r) = O(min(∆2n, n2))

Proof. Recall the first phase has d − 1 passes. Let αj = max(βj , βj+1). Recall the total

number of stages in the ith pass is

113

ci ≤
d−i∑
j=1

(3nj + 3nj+1 + 4αjni+j). (11.2)

So the total number of stages during the first phase is

d−1∑
i=1

ci ≤
d−1∑
i=1

d−i∑
j=1

(3nj + 3nj+1 + 4αjni+j) (11.3)

≤ 6∆n+ 4
d−1∑
j=1

d−j∑
i=1

αjni+j (11.4)

≤ 6∆n+ 4
d−1∑
j=1

αj

d−j∑
i=1

ni+j (11.5)

≤ 6∆n+ 4n

d−1∑
j=1

αj (11.6)

≤ 6∆n+ 4nmin(∆2, 2n) (11.7)

The last inequality follows from the fact that
∑d−1

j=1 αj ≤ 2
∑d−1

j=1 βj < 2n and
∑d−1

j=1 αj ≤

∆2, since d ≤ ∆ and αj ≤ ∆ for all j.

Putting this upper bound of S(T, r) in Equation 11.1 we get a simplified recurrence:

C(n) ≤ C(n/2) +O(min(∆2n, n2)) (11.8)

This shows that OddEvenTreeSort requires O(min(∆2n, n2)) stages to correctly sort any

input with respect to the MP ordering. This is a good bound on the sorting number for

trees, when ∆ is small.

114

Chapter 12: Sorting Network On A Pyramid

In this chapter we propose a sorting network for the pyramid graph. A 1-dimensional

pyramid with m-levels is defined as the complete binary tree of 2m − 1 nodes, where the

nodes in each level are connected by a path (an one-dimensional mesh). We assume the

apex (root) to be at level 0, and subsequent levels are numbered in ascending order. A 2-

dimensional pyramid is shown in Figure 12.1. In this case each level l is a 2l×2l square mesh.

Similarly a d-dimensional pyramid having m levels is denoted by △m,d, where the level l is

a d-dimensional regular mesh of length 2l in each dimension. Clearly, the size of layer l is

|Ml| = nl = 2ld and the number of vertices in the graph is N = |△m,d| =
∑m−1

l=0 2ld = 2md−1
2d−1

.

We treat a vertex x ∈Ml as a vector in [1, 2l]d which denotes its position on the mesh.

M0

M1

M2

Figure 12.1: A pyramid △3,2 in 3-dimension

Next we prove an upper bound on st(△m,d). In order to derive this bound we first need

to prove the following bound on the routing number of pyramid.

Lemma 16. The routing number for a pyramid rt(△m,d) = O(dN1/d).

115

M0

M1

M2

v00

v10

v212

213

v215

Figure 12.2: The graph △′
3,2 after stripping way edges from △3,2

Proof. Given the pyramid △3,2 consider a subgraph △′
3,2 as shown in Figure 12.2. In the

literature this subgraph is sometimes referred to as a “multi-grid”, see for example [61].

We get this subgraph as we move down from the apex we remove all but the “first” edge

from the set of edges that connects a vertex to its neighbors in the level below. The

surviving edges that connects two adjacent layers will be referred to as vertical edges.

These edges can be grouped into disjoint vertical paths as shown by the blue lines in

Figure 12.2. The above construction naturally generalizes to higher dimensions. Clearly

rt(△m,d) ≤ rt(△′
m,d) where △′

m,d is the multi-grid obtained from △m,d. We only need to

show rt(△′
m,d) = O(dN1/d).

Let π be some input permutation. Without loss of generality we assume that π consists

only of 2-cycles or 1-cycles. From [36] we know that any arbitrary permutation can be

written as a composition of at most two such permutations. This follows from the fact that

we can route any complete graph in two steps (see Chapter 8). In order to route π we first

route the pebbles into their appropriate levels and then route within these levels. Routing

consists of five rounds where in the odd numbered rounds we route within the levels and in

the even numbered rounds we use the vertical paths to route between the levels. The first

four rounds will move the pebbles to their appropriate destination level.

Let vij be the j
th node at level i, where j ∈ [0, ni−1]. Let ϕk be the number of maximal

116

vertical paths of length k. For example, in Figure 12.2 we have ϕ2 = 1 and ϕ1 = 3. In

general in a △′
m,d, ϕk = nm−k−1 − nm−k−2 for k ∈ [1,m− 2] and ϕm−1 = 1. We group the

cycles in π based on their source and destination level (in case of 1-cycles the source and

destination levels are the same). Let Pij (i < j) be the set of pebble pairs that need to be

moved from level i down to level j and vice-versa and Pii be the set of pebbles that stay in

level i. Let µij = |Pij |. Let Pi =
⋃

i<j Pij be the set of pebble pairs that move a pebble up

to level i. We shall only use disjoint vertical paths of length m− i− 1 to route the pebbles

in Pi. During a round of inter-level routing only paths of length m − i − 1 will be used,

for some j, to swap two pebbles between levels i and j; all other pebbles on that path will

not move. As an example consider the case in Figure 12.2. Suppose π(v00) = v21. Then

during the intra-level routing on the first round we will move the pebble at v21 to v20. All

intermediate nodes on this path, which in this case is just v10 will be ignored (i.e., a pebble

on these nodes will return to their original position at the end of the round). The four

pebbles {v10, v11, v12, v13} will only use the three paths of length 1 to move to the bottom

level (if necessary). In general |Pi| =
∑

j>i µij ≤ ni ≤ 2(ni − ni−1) = 2ϕm−i−1. Hence we

need at most two rounds of inter-level routing along these vertical paths to move all pebbles

in Pi.

Routing within the levels (which happens in parallel) is dominated by the routing num-

ber of the last level which is known to be O(dn
1/d
m) = O(dN1/d) (for example, we can use

Corollary 2 of Theorem 4 in [36]). Hence the three odd rounds take O(dN1/d) in total. In

the even rounds routing happens in parallel along the disjoint vertical paths. The routing

time in this case is O(m). Since, N1/d = Ω(2m), the even rounds do not contribute to the

overall routing time, which remains O(dN1/d), as claimed.

Using the above theorem we give an upper bound on the sorting number of the pyramid.

Theorem 12.1 (Pyramid). The sorting number of a pyramid△m,d, st(△m,d) = O(d N1/d).

117

Proof. Let △i,d denote the sub-pyramid from level 0 to level i and let Mi be the d-

dimensional mesh at level i. Let πi be some ordering of the mesh Mi. Note that πi :

[1, 2i]d → [ni] is a bijection and π0 is the identity permutation. Next we define a sorted

order π for the pyramid △m,d based on the πi’s; in the permutation π we assume the layers

are ordered among themselves in ascending order starting from the apex. So the vertex

labeled (with respect to Mi) i on layer j has a global rank π(i) = πj(i) + |△j−1,d|. Recall

that st(Mi) = O(dn
1/d
i) which is due to Kunde[57] where he used a πi that was a general

snake-like ordering. From Lemma 10 we see that this bound still holds if we replace the

snake-like ordering with some arbitrary permutation. In this case rt(Mi) = Θ(st(Mi)).

Next we describe the sorting network S(△m,d,M, π) by specifying the matchings as follows.

S(△m,d,M, π)

1. Route all pebbles of △m−1,d to Mm−1 and sort them using the mesh Mm−1.

2. Route these pebbles back to △m−1,d such that they are in sorted order (according to

π).

3. Sort the mesh Mm−1 according to πm−1.

4. Route a pebble of rank i ≤ nm−2 at position xi ∈Mm−1 to yi ∈Mm−1 where

yi[j] = 2π−1
m−2(nm−2 + 1− i)[j]− 1

Let Y = (y1, . . . , ynm−2).

5. Merge Y with Mm−2 using pairwise compare-exchanges, where yi is compared with

z ∈Mm−2 such that πm−2(z) = i.

6. Repeat 1-5 once.

7. Repeat 1-3 once.

118

Depth

Note that the number of times we route on △m,d is 6. Also sorting on the mesh Mm−1

occurs 6 times. We know that both routing and sorting on a mesh takes O(dN1/d) steps.

From Lemma 16 we see that routing on △m,d also takes O(dN1/d) steps. So the total

contribution of all the steps except 4 and 5 is O(dN1/d). It is easy to see that step 4 also

takes O(dN1/d) as it just routes a permutation on the mesh Mm−1. And step 5 can be

accomplished in constant time. Putting it all together we see that st(△m,d) = O(dN1/d)

as claimed.

Correctness

Here we show S(△m,d,M, π) is a sorting network. Clearly the algorithm is oblivious. There-

fore, by invoking the 0-1 principle [51] we may assume that our pebbles are all 1’s and 0’s.

Before the execution of step 7 if every pebble in △m−1,d is smaller than every pebble in

Mm−1 then after step 7 we shall have our desired sorted order. Otherwise there must be

some pebbles x ∈Mm−1 that is supposed to be in △m−1,d. If that is the case then x must

be a 0, otherwise x is greater than or equal to every pebble in △m−1,d and we are done.

Now look at step 4 and 5. In step 4 we route the set of nm−2 smallest pebbles in Mm−1

such that the ith smallest pebble is at some vertex of Mm−1 which is directly connected to

the vertex in Mm−2 that has the ith largest pebble of Mm−2. Since x was not exchanged

during both the iteration of step 4 and 5 then x must be larger than at least 2nm−2 elements

in △m,d, but then x should not belong to △m−1,d (since |△m−1,d| ≤ 2nm−2 − 1 for any d)

contradicting our assumption. Hence, after step 6 we see that all pebbles of △m−1,d must

be smaller than every pebble of Mm−1 hence sorting these pebbles independently in the

final step gives the desired sorted order.

119

Bibliography

[1] D. Knuth, “The art of computer programming 1: Fundamental algorithms 2: Seminu-
merical algorithms 3: Sorting and searching,” MA: Addison-Wesley, vol. 30, 1968.

[2] J. Kahn and M. Saks, “Balancing poset extensions,” Order, vol. 1, no. 2, pp. 113–126,
1984.

[3] D. E. Knuth, “The art of computer programming. vol. 1: Fundamental algorithms.
second printing,” 1969.

[4] R. E. Tarjan, “A class of algorithms which require nonlinear time to maintain disjoint
sets,” Journal of computer and system sciences, vol. 18, no. 2, pp. 110–127, 1979.

[5] S. Kannan and S. Khanna, “Selection with monotone comparison costs,” in Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 2003, pp. 10–17.

[6] M. Charikar, R. Fagin, V. Guruswami, J. M. Kleinberg, P. Raghavan, and A. Sahai,
“Query strategies for priced information,” J. Comput. Syst. Sci., vol. 64, no. 4, pp.
785–819, 2002. [Online]. Available: http://dx.doi.org/10.1006/jcss.2002.1828

[7] A. Gupta and A. Kumar, “Sorting and selection with structured costs,” in 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17
October 2001, Las Vegas, Nevada, USA, 2001, pp. 416–425. [Online]. Available:
http://dx.doi.org/10.1109/SFCS.2001.959916

[8] W. Goddard, C. Kenyon, V. King, and L. J. Schulman, “Optimal randomized
algorithms for local sorting and set-maxima,” SIAM J. Comput., vol. 22, no. 2, pp.
272–283, 1993. [Online]. Available: http://dx.doi.org/10.1137/0222020

[9] A. Biswas, V. Jayapaul, and V. Raman, “Improved bounds for poset sorting in the
forbidden-comparison regime,” in Conference on Algorithms and Discrete Applied
Mathematics. Springer, 2017, pp. 50–59.

[10] S. Chatterji, “The number of topologies on n points, kent state university,” NASA
Technical Report, 1966.

[11] C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld, and E. Verbin, “Sorting and
selection in posets,” SIAM J. Comput., vol. 40, no. 3, pp. 597–622, 2011. [Online].
Available: http://dx.doi.org/10.1137/070697720

[12] U. Faigle and G. Turán, “Sorting and recognition problems for ordered sets,”
SIAM J. Comput., vol. 17, no. 1, pp. 100–113, 1988. [Online]. Available:
http://dx.doi.org/10.1137/0217007

120

http://dx.doi.org/10.1006/jcss.2002.1828
http://dx.doi.org/10.1109/SFCS.2001.959916
http://dx.doi.org/10.1137/0222020
http://dx.doi.org/10.1137/070697720
http://dx.doi.org/10.1137/0217007

[13] J. Cardinal and S. Fiorini, “On generalized comparison-based sorting problems,” in
Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian
Munro on the Occasion of His 66th Birthday, 2013, pp. 164–175. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40273-9 12

[14] N. Alon, M. Blum, A. Fiat, S. Kannan, M. Naor, and R. Ostrovsky, “Matching nuts
and bolts,” in Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms. 23-25 January 1994, Arlington, Virginia., 1994, pp. 690–696. [Online].
Available: http://dl.acm.org/citation.cfm?id=314464.314673

[15] J. Komlós, Y. Ma, and E. Szemerédi, “Matching nuts and bolts in o(n log n) time,”
SIAM J. Discrete Math., vol. 11, no. 3, pp. 347–372, 1998. [Online]. Available:
http://dx.doi.org/10.1137/S0895480196304982

[16] J. E. Savage, Models of computation - exploring the power of computing. Addison-
Wesley, 1998.

[17] M. Akra and L. Bazzi, “On the solution of linear recurrence equations,”
Comp. Opt. and Appl., vol. 10, no. 2, pp. 195–210, 1998. [Online]. Available:
http://dx.doi.org/10.1023/A:1018373005182

[18] A. C.-C. Yao, “Probabilistic computations: Toward a unified measure of complexity,”
in Foundations of Computer Science, 1977., 18th Annual Symposium on. IEEE, 1977,
pp. 222–227.

[19] Z. Huang, S. Kannan, and S. Khanna, “Algorithms for the generalized sorting
problem,” in IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, 2011, pp. 738–747.
[Online]. Available: http://dx.doi.org/10.1109/FOCS.2011.54

[20] S. Angelov, K. Kunal, and A. McGregor, “Sorting and selection with random
costs,” in LATIN 2008: Theoretical Informatics, 8th Latin American Symposium,
Búzios, Brazil, April 7-11, 2008, Proceedings, 2008, pp. 48–59. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-78773-0 5

[21] M. E. Dyer, A. M. Frieze, and R. Kannan, “A random polynomial time algorithm for
approximating the volume of convex bodies,” J. ACM, vol. 38, no. 1, pp. 1–17, 1991.
[Online]. Available: http://doi.acm.org/10.1145/102782.102783

[22] M. Ajtai, J. Komlós, W. Steiger, and E. Szemerédi, “Almost sorting in one round,”
Randomness and Computation, vol. 5, pp. 117–125, 1989.

[23] B. Bollobás and M. Rosenfeld, “Sorting in one round,” Israel Journal of Mathematics,
vol. 38, no. 1-2, pp. 154–160, 1981.

[24] B. Bollobás and G. R. Brightwell, “Transitive orientations of graphs,” SIAM
J. Comput., vol. 17, no. 6, pp. 1119–1133, 1988. [Online]. Available: http:
//dx.doi.org/10.1137/0217072

[25] B. Bollobás and G. Brightwell, “Graphs whose every transitive orientation contains
almost every relation,” Israel Journal of Mathematics, vol. 59, no. 1, pp. 112–128,
1987.

121

http://dx.doi.org/10.1007/978-3-642-40273-9_12
http://dl.acm.org/citation.cfm?id=314464.314673
http://dx.doi.org/10.1137/S0895480196304982
http://dx.doi.org/10.1023/A:1018373005182
http://dx.doi.org/10.1109/FOCS.2011.54
http://dx.doi.org/10.1007/978-3-540-78773-0_5
http://doi.acm.org/10.1145/102782.102783
http://dx.doi.org/10.1137/0217072
http://dx.doi.org/10.1137/0217072

[26] R. L. Graham, A. C. Yao, and F. F. Yao, “Information bounds are weak in the shortest
distance problem,” Journal of the ACM (JACM), vol. 27, no. 3, pp. 428–444, 1980.

[27] W. Goddard, C. Kenyon, V. King, and L. J. Schulman, “Optimal randomized algo-
rithms for local sorting and set-maxima,” SIAM Journal on Computing, vol. 22, no. 2,
pp. 272–283, 1993.

[28] A. Bar-Noy, R. Motwan, and J. Naor, “A linear time approach to the set maxima
problem,” SIAM Journal on Discrete Mathematics, vol. 5, no. 1, pp. 1–9, 1992.

[29] R. Desper, “The set-maxima problem: an overview,” Master’s thesis, Rutgers Univer-
sity, 1994.

[30] J. N. Komlós, “Linear verification for spanning trees,” in Foundations of Computer
Science, 1984. 25th Annual Symposium on. IEEE, 1984, pp. 201–206.

[31] V. Liberatore, “Matroid decomposition methods for the set maxima problem,” in
SODA, 1998, pp. 400–409.

[32] R. E. Tarjan, “Sensitivity analysis of minimum spanning trees and shortest path trees,”
Information Processing Letters, vol. 14, no. 1, pp. 30–33, 1982.

[33] O. Aichholzer, W. Mulzer, and A. Pilz, “Flip distance between triangulations of a
simple polygon is np-complete,” Discrete & Computational Geometry, vol. 54, no. 2,
pp. 368–389, 2015.

[34] S. Even and O. Goldreich, “The minimum-length generator sequence problem is np-
hard,” Journal of Algorithms, vol. 2, no. 3, pp. 311–313, 1981.

[35] M. R. Jerrum, “The complexity of finding minimum-length generator sequences,” The-
oretical Computer Science, vol. 36, pp. 265–289, 1985.

[36] N. Alon, F. R. Chung, and R. L. Graham, “Routing permutations on graphs via match-
ings,” SIAM journal on discrete mathematics, vol. 7, no. 3, pp. 513–530, 1994.

[37] I. Benjamini, I. Shinkar, and G. Tsur, “Acquaintance time of a graph,” SIAM Journal
on Discrete Mathematics, vol. 28, no. 2, pp. 767–785, 2014.

[38] T. Miltzow, L. Narins, Y. Okamoto, G. Rote, A. Thomas, and T. Uno, “Approximation
and hardness for token swapping,” arXiv preprint arXiv:1602.05150, 2016.

[39] K. Yamanaka, E. D. Demaine, T. Ito, J. Kawahara, M. Kiyomi, Y. Okamoto, T. Saitoh,
A. Suzuki, K. Uchizawa, and T. Uno, “Swapping labeled tokens on graphs,” Theoretical
Computer Science, vol. 586, pp. 81–94, 2015.

[40] J. Kawahara, T. Saitoh, and R. Yoshinaka, “The time complexity of the token swapping
problem and its parallel variants,” arXiv preprint arXiv:1612.02948, 2016.

[41] L. Zhang, “Optimal bounds for matching routing on trees,” SIAM Journal on Discrete
Mathematics, vol. 12, no. 1, pp. 64–77, 1999.

122

[42] W. T. Li, L. Lu, and Y. Yang, “Routing numbers of cycles, complete bipartite graphs,
and hypercubes,” SIAM Journal on Discrete Mathematics, vol. 24, no. 4, pp. 1482–
1494, 2010.

[43] S. Micali and V. V. Vazirani, “An O(
√
|V ||E|) algorithm for finding maximummatching

in general graphs,” in Foundations of Computer Science, 1980., 21st Annual Sympo-
sium on. IEEE, 1980, pp. 17–27.

[44] A. Gyárfás, M. Ruszinkó, G. N. Sárközy, and E. Szemerédi, “Partitioning 3-colored
complete graphs into three monochromatic cycles,” Electronic J. of Combinatorics,
vol. 18, no. 1, 2011.

[45] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, “Interactive proofs and
the hardness of approximating cliques,” Journal of the ACM (JACM), vol. 43, no. 2,
pp. 268–292, 1996.

[46] L. Engebretsen and J. Holmerin, “Clique is hard to approximate within n 1-o (1),”
in International Colloquium on Automata, Languages, and Programming. Springer,
2000, pp. 2–12.

[47] U. Feige, “Approximating maximum clique by removing subgraphs,” SIAM Journal on
Discrete Mathematics, vol. 18, no. 2, pp. 219–225, 2004.

[48] R. Boppana and M. M. Halldórsson, “Approximating maximum independent sets by
excluding subgraphs,” BIT Numerical Mathematics, vol. 32, no. 2, pp. 180–196, 1992.

[49] R. Diestel, “Graph theory. pdf,” 2005.

[50] M. Hall, Combinatorial theory. John Wiley & Sons, 1998, vol. 71.

[51] D. Knuth, The art of computer programming: Sorting and searching, ser.
The Art of Computer Programming. Addison-Wesley, 1998. [Online]. Available:
https://books.google.com/books?id=wRgZAQAAIAAJ

[52] M. Ajtai, J. Komlós, and E. Szemerédi, “An O(nlogn) sorting network,” in Proceedings
of the fifteenth annual ACM symposium on Theory of computing. ACM, 1983, pp.
1–9.

[53] K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the April
30–May 2, 1968, spring joint computer conference. ACM, 1968, pp. 307–314.

[54] T. Leighton and C. G. Plaxton, “Hypercubic sorting networks,” SIAM Journal on
Computing, vol. 27, no. 1, pp. 1–47, 1998.

[55] C. G. Plaxton and T. Suel, “A super-logarithmic lower bound for hypercubic sorting
networks,” in International Colloquium on Automata, Languages, and Programming.
Springer, 1994, pp. 618–629.

[56] C. P. Schnorr and A. Shamir, “An optimal sorting algorithm for mesh connected com-
puters,” in Proceedings of the eighteenth annual ACM symposium on Theory of com-
puting. ACM, 1986, pp. 255–263.

123

https://books.google.com/books?id=wRgZAQAAIAAJ

[57] M. Kunde, “Optimal sorting on multi-dimensionally mesh-connected computers,” in
Annual Symposium on Theoretical Aspects of Computer Science. Springer, 1987, pp.
408–419.

[58] O. Angel and I. Shinkar, “A tight upper bound on acquaintance time of graphs,” Graphs
and Combinatorics, vol. 32, no. 5, pp. 1667—-1673, 2016, arXiv:1307.6029.

[59] I. Shinkar, “Private communications,” 2016.

[60] L. Babai and M. Szegedy, “Local expansion of symmetrical graphs,” Combinatorics,
Probability and Computing, vol. 1, no. 01, pp. 1–11, 1992.

[61] F. T. Leighton, Introduction to parallel algorithms and architectures: Arrays· trees·
hypercubes. Elsevier, 2014.

124

Curriculum Vitae

Avah Banerjee graduated with honors from Bengal Engineering College & Model School,
Howrah, India in 2004. He went on to study Electrical Engineering at National Institute
of Technology, Durgapur, India, where he was awarded a Bachelor of Technology (Hons.)
in 2009. After graduation he worked primarily in the field of computer vision. He was
employed at Videonetics Technology Pvt. Ltd. and subsequently to TechBLA Corp. Pvt.
Ltd. from 2009 to 2012 as a software engineer. During this time he worked with Dr. Prasun
Das (SQC-OR) and Dr. Sanghamitra Bandyopadhyay (Machine Learning Unit) at Indian
Statistical Institute (Kolkata) on evolutionary multi-objective optimization. He received
his Masters in Computer Science from George Mason University in 2015 and subsequently
his PhD in 2018. His research focuses on graph algorithms and computational geometry.

125

	List of Tables
	List of Figures
	Abstract
	I Part I: Problems On Order
	 Comparison Models and Problems
	Introduction
	Basic Definitions
	Posets
	Graphs

	Abstract Comparison Model (ACS)
	Methods for Lower Bounds

	Machine Model
	Pointer Machines and CBPs

	CBPs with Additional Inputs
	Non-uniform Comparison Costs

	 Restricted Comparison Model
	Restricted Cost Model and Sorting
	Background
	Preliminaries
	A Deterministic Algorithm When q = O(n)
	Basic Idea
	A Restricted Case
	Initial Sorting
	Partition Step
	Merge Step

	 Restricted Sorting Continued
	Constructing the Set K
	Computing An Approximate Median Of X
	A Divide-and-Conquer Approach
	Merge Step
	Comparison Complexity

	 Restricted Comparison Model Under Randomization
	Restricted Sorting With Randomization
	A Randomized Algorithm
	When G Is A Random Graph

	 Set Maxima
	Background
	Previous and Related Work
	Our Result

	A Generic Formulation
	Convex Set-System

	 Concluding Remarks
	Restricted Sorting
	Set-Maxima
	Local Sorting

	II Part II: Problems On Graph Reconfigurations
	 Reconfiguration Problems
	General Framework
	Examples of Reconfiguration Problems
	Permutation Routing
	Acquaintance Time
	Sorting Permutations
	Visiting Time

	Sequential Model

	 Hardness Of Permutation Routing
	Prior Results
	Computational Results
	A O(n2.5) Time Algorithm for Deciding when rt(G,) 2
	Determining rt(G,) k is Hard for Any k 3
	Connected Colored Partition Problem (CCPP)
	Routing As Best You Can

	 Structural Results On Permutation Routing
	Graph Connectivity
	Structural Results
	An Upper Bound For h-connected Graphs
	Relation Between Clique Number and Routing Number

	 Sorting Permutations and Sorting Number
	Some Additional Results On Routing
	Routing on subgraphs of G

	General Upper Bounds on st(G)
	Bounds on Concrete Graph Families

	 Sorting Network On Trees
	 Sorting Network On A Pyramid
	Bibliography

