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Abstract

ON MAXIMAL LAYERS OF RANDOM ORDERS

Avah Banerjee

George Mason University, 2015

Thesis Director: Dr. Dana Richards

In this thesis we investigate the maximal layers of random partial orders. Main contri-

butions are two-fold. In the first half we investigate the expected size of different maximal

layers of a random partial order. In particular when the points are in a plane, we give an

enumerative formula for the distribution of the size of these maximal sets. Using Monte-

Carlo based simulation we extrapolate the results for higher dimensions. In the second part

we explore the computational aspect of the problem. To this end we propose a randomized

algorithm for computing the maximal layers and analyze its expected runtime. We show

that the expected runtime of our proposed algorithm is bounded by o(kn2) when k is fixed

and in the worst case by O(kn2). This is the first non-trivial algorithm whose run-time

remains polynomial whenever k is bounded by some polynomial in n while remaining sub-

quadratic in n for constant k. We also extend these results to random orders with arbitrary

distributions.



Chapter 1: Introduction

Random partial orders, soon to be defined formally, are one of the more fundamental objects

in combinatorics as well as in computational geometry. Unlike their much studied cousins,

random graphs, random partial orders has not been studied that extensively. This is partly

due to the fact that the partial ordering among elements makes independence assumptions

in probabilistic analysis oftentimes elusive. Before formally introducing random orders, we

shall first introduce the concept of maximal sets of partial orders.

A set P along with a relation R ⊂ P × P such that R is antisymmetric, transitive

and reflexive is called a partially ordered set (poset). If for all x, y ∈ P either (x, y) or

(y, x) ∈ R then it is a total order (ordering between each pair of element is known). We

will first introduce maximal sets in the geometric setting and then for partial orders. Let P

(with |P | = n) be a set of points in some k-dimensional space such that in each dimension

points are orderable[1]. When k = 2, we can view P as a set of points in a plane. Given

such a set of points we often want to determine the boundary of the set. In one dimensional

space, when P is just points on a line 1 the boundary set can be defined unambiguously.

That is, it consists of the minimum and the maximum point of P . If P is a multi-set then

there may be more than one maximum or minimum point or both. However, we can define

the boundary set in several ways if P resides in a plane or in some higher dimension. When

P consists of points on a plane one of the most common way to define the boundary of P

as the smallest convex set Q ⊂ P , such that if a convex set contain Q then it contains P .

This convex set Q is called the convex hull CH(P ) of P . In the plane, the shape of this set

is just a convex polygon. For any P the convex hull CH(P ) is unique modulo points that

are identical.

1We shall assume the finitary setting here: that is objects are finite as well as the dimensions in which
they reside. This makes the algorithmic aspect of our study meaningful.
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In this thesis we look at a different kind of boundary set, called the maximal set of

P . Before we can introduce it, we need to define some terms first. Let P be a set of

k-dimensional points. We shall use x[i] to denote the ith coordinate of x.

Definition 1.1. For two points x, y ∈ P we say x ≻ y (x dominates y or x is above y) if

x[i] ≥ y[i] ∀i ∈ [1...k].

Definition 1.2. If neither x ≻ y nor y ≻ x then we say that x and y are incomparable,

denoted by x∥y.

Definition 1.3. IfML(P ) is the maximal set of P then:

ML(P ) = {x ∈ P | ̸ ∃y ∈ P and y ≻ x}

We refer the maximal set and maximal layer interchangeably. Unlike CH(P ), ML(P ) is

not unique. It depends on how we define dominance. For example if instead use ≤ in place

of ≥ we still get a valid definition. If defined in this way the set is called the minimal set of

P . In general, we can define the extremal set of P with respect to a orthant in k-space:

Definition 1.4. IfML(P,O) is the extremal set of P with respect to a orthant O, then:

ML(P,O) = {x ∈ P | ̸ ∃y ∈ P and y ≻O x}

and x ≻O y if x[i] op y[i] for each i ∈ [1...k]. Where, op is either ≥ or ≤ depending on the

orthant O.

Thus there are 2k different extremal sets corresponding to each orthants. In this study we

will not use this generalized definition but work with the one defined earlier. The results

presented here carries over to this general setting without much difficulty. Next we define

the ith maximal set of P :

Definition 1.5. 1. ML1(P ) =ML(P )

2



2. MLi(P ) =ML(Pi) for i > 1

Where, Pi = P \
⋃i−1

j=1MLi(P ).

The ith maximal layers is thus the maximal layer of the remaining set of points after peeling

away all of the previous layers from P . If points are in line (k = 1) then each layer consist

of only one point and the layer ordering is just the ordering of the points in the line. This

natural ordering between the layers carries forward to dimensions k > 1.

In the combinatorial setting we define maximal layers for the poset (P,R≻). The set

of points in P forms the poset (P,R≻) in the obvious way: If x, y ∈ P and x ≻ y then

(x, y) ∈ R≻. Since for the most part the set R≻ will be clear from the context we shall use

P to represent the point set as well the poset. The definitions of maximal layers remains

the same. One could view the layers of P as levels. The Figure 1.1 highlights the layers of

P in the planar setting. Clearly the layers need not be convex. Here are couple of more

definitions that we shall use later.

Definition 1.6. We call C ⊂ P a chain if the elements in C and the set (C × C) ∩ R≻

forms a total order.

Definition 1.7. We call A ⊂ P a anti-chain if the elements in A are all mutually incom-

parable.

Definition 1.8. The length (cardinality) of the largest chain of P is called the height of

P . It can be defined also as the number of non-empty maximal layers in P . It is denoted

as hn,k(P ) or simply by h when the context is clear.

Definition 1.9. Similarly the cardinality of the largest anti-chain is called the width of P ,

denoted by wn,k(P ) or simply by w when the context is clear.

Definition 1.10. A chain decomposition of P is the partition of P into disjoint chains such

that each element belongs to exactly one chain.

An anti-chain decomposition is defined in an analogous way. Since, points are in the

3



same maximal layer are by definition incomparable and each point belongs to exactly one

layer, the maximal layers together constitute an anti-chain decomposition of P .

Definition 1.11. A linear extension of P is an ordering (permutation) π of the elements

of P such that if x ≻ y then π(x) < π(y). Hence, a linear extension is an ordering which

respects the relations between elements of P .

1.1 Random Orders

Now we are ready to formally define random orders. There has been several models of

random orders proposed in the literature, for a detail treatise the reader is referred to [1,2].

Here we shall give the two most common one.

Definition 1.12 (Geometric). Let each x ∈ P is picked uniformly and independently from

[0, 1]k, the unit cube equipped with a domination order. Then P is a random order in [0, 1]k.

We can pick x from U [0 , 1 ]k by picking each component x[i] from U [0 , 1 ] independently.

Here, the notation U [0, 1] denotes the uniform distribution over the interval [0, 1]. We

shall use the notation U [S] to denote the uniform distribution over the set S. Let π1 and

π2 be two permutations of [1...n] not necessarily distinct. We define the intersection of π1

and π2 as the poset P such that P = {(π1(i), π2(i)) | i ∈ [1...n]}. Then ‘≻’ is defined in the

obvious way.

Definition 1.13 (Combinatorial). For each i ∈ [1...k] we pick one permutation πi uni-

formly and independently from Sn, the symmetric group. Then the intersection of these

permutations forms a random order in k dimensions2.

The two definitions are equivalent, even though according to the first definition P can be

a multi-set. Although the event in which that happens has a null-support. In this thesis we

shall use both of these definitions whenever it suits our purpose. In chapter two, where we

2Here by dimension of P we mean the dimension of its elements and not the dimension of the poset
P , which is defined in a different way: The dimension of the poset P denoted by dim(P ), is the minimum
number linear extensions of P whose intersecting order gives the partial order P .
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discuss the distribution of the sizes ofMLi(P ), we will use the combinatorial definition. On

the other hand, in chapter 3, we shall use the geometric definition to analyze our randomized

algorithm. We shall also need some more definitions to help with our analysis but we will

introduce them as they become necessary. From now on we shall refer to maximal layers as

just layers.

The thesis is organized as follows: In Chapter 2 we discuss the expected size of different

layers of P . In section 2.1 we compute this size distribution of different layers when k = 2.

Next, we study the behavior of this distribution using Monte-Carlo based simulation for

higher values of k. In Chapter 3 we begin by introducing some related work on computing

maximal sets. Next we describe our proposed algorithm in Section 3.3. In Section 3.4

we analyze its expected runtime which we continue to Section 3.5 in light of a new data-

structure. In Section 3.6 we discuss how we can extend our algorithm when P is not a

proper random order (as defined above) but some random set of vectors. We summarize

and conclude in Chapter 4.

5



Chapter 2: Expected Size of Maximal Layers

Formal study of random partial orders were first investigated in 1980s. This is in contrast

to random graphs; the study of which began much earlier [3,4]. For random orders authors

have studied height, width, number of isolated points, number of linear extensions, size of

the first maximal layer and other such properties of a random orders[1,2,5–7]. Some of the

more general aspects of these type of results were encapsulated as first order statements on

partial orders [2]. For example we already have a tight upper and lower bound for the height

and width of P . Winkler gave the first non-trivial bound for the expected height h as Θ(n1/k)

and showed that the expected width w to satisfy: 1
en

1−1/k ≤ w(P ) ≤ (lnn)n1−1/k[2]. Later

Brightwell tightened the upper bound to 4kn1−1/k[1].

However, to the best of our knowledge, there has not been any attempt at computing

the distribution of points into different layers of a random order. We only have a bound

on the size of the first layer, which is O(logk−1 n) [5]. Let |MLm(P )| = wm(n, k) be the

expected size of the mth layer (2 ≤ m ≤ n). We want to know how wm(n, k) behaves as a

function of n, k and m. Since n and k are clear from context we shall simply use wm in place

of wm(n, k). We already have a bound on w1 as stated earlier. In the ideal scenario we want

to get similar bounds for wm as we have for w and h. Trivially, wm ≤ w for all m. We also

note that wn = 0 unless P is a total order. Since, w = Θ(n1−1/k) and w1 = O(logk−1 n) it

can be conjectured that wm initially grows and then falls as m goes from 1 to n. This is

also evident from our empirical results.

In the next section we will describe how we can compute wm combinatorially (when

k = 2), before moving on to empirical simulations. In this regard we take an enumerative

approach. This is in contrast to a recursive one taken by the authors in [5] to compute

w1(n, k).

6



2.1 An Enumerative Strategy To Compute wm(n, 2)

The case when m = 1 is a special one. We know that an element x ∈ P belongs to the

first layer iff it is not dominated by any element in P \ x. It does not matter how these

elements in P \ x are related to each other: that is the sub-poset formed by these elements

does not decide the membership of x inML1. Only their individual relations with x does.

However, this notion cannot be extended to compute the expected size of other layers.

From Definition 1.5, x ∈ MLm iff there exists a chain of size m − 1 above x. Hence, the

relationships between elements that dominate x determines which layer x will belong to.

For example, the recursive formulation given in [5] fails for m > 1 precisely because of this

reason.

In this section, using enumeration, we will derive an expression for wm(n, 2). However,

the computation depends on whether we can compute the number of permutations having

some increasing subsequence of a given length or greater. Let us define T (n, l) to be the

number of permutations (of [1, ..., n]) whose largest increasing subsequence has length at

least l. The following theorem gives an expression for wm(n, 2) in terms of T (n, l).

Theorem 2.1. The expected size of wm(n, 2) is given by:

wm(n, 2) = Wm(n)−Wm+1(n) (2.1)

where, Wm(n) =

(
1

n!

) n∑
i=1

(n− i)!

i−1∑
l=m−1

(
i− 1

l

)
T (l,m− 1)

n∑
j=m

(
j − 1

l

)
(n− j)i−1−l

and (n)k =
∏k−1

i=0 (n− i) is the falling factorial.

Proof. We first sort the vectors in P dimension-wise in descending order. Relabel the vectors

according to their ranks in the sorted order in the first dimension. Now with respect to this

labelling, the (sorted) ordering of elements in the other dimension is just some permutation

7



of [1, ..., n]. Here, the first dimension is just the identity permutation (see Figure 2.1).

Let us consider the ith vector in this labeling, that is, the vector which has a rank i in

dimension 1. Suppose it has the rank j in the other dimension. Our strategy is to compute

the probability that the vector with rank i in the first dimension will belong to the mth

layer or below. Let this probability be P (i, n). Then,

Wm(n) =

n∑
i=1

P (i, n)

will be the expected number of points which are on or below the mth layer. Hence,

wm(n, 2) = Wm(n)−Wm+1(n).

We compute P (i, n) by counting the number of instances (of the random order P ) in

which this event occurs. In the first dimension the element has a rank i and in the second

it has a rank j. Given a fixed permutation π, for the element to belong to some layer ≥ m,

there must exists an increasing subsequence of length at-least m − 1 in U2 consisting of

elements only from U1. Here, U1 = (1, ..., i− 1) and U2 = (π(1), ..., π(j − 1)). This in turn

can be computed by considering each possible subset of U1 of size m− 1 to i− 1 and asking

how many ways we can map it to U2. For each l-subset of U1, we can place it in U2 in(
j−1
l

)
ways and whose elements can be permuted among themselves in exactly T (l,m− 1)

ways. Now the rest of U1 (those elements which were not mapped to U2) is mapped to L2 in

(n− j)i−1−l ways. Lastly, the elements of L1 can be placed into U2 ∪L2 in (n− i)! way. We

do this for each subset of U1 of size ≥ m− 1 and each rank j from m to n. Thus yielding,

P (i, n) =

(
1

n!

) i−1∑
l=m−1

(
i− 1

l

)
T (l,m− 1)

n∑
j=m

(
j − 1

l

)
(n− j)i−1−l(n− i)! (2.2)

This immediately gives the expression for wm(n, 2) as stated in the theorem.

8



In order to compute wm(n, 2) from Theorem 4 we need to compute T (n, k). Authors

have found that expressing T (n, k) in terms of some generating function is quite difficult.

Baik and others [8] proved that ln converges in distribution to the Tracy-Widom distribu-

tion [9], where, ln is the size of the largest increasing sequence of a random permutation.

Thus it is possible to numerically approximate T (n, k) (and consequently wm(n, 2)) by

first numerically approximating the cumulative probability P (ln ≥ k) of the Tracy-Widom

distribution.

2.2 Experimental Approximation of wm(n, k)

Using Monte-Carlo based simulation we study the behavior of wm(n, k) and w∗(n, k) =

maxmwm(n, k). Results of these simulations, averaged over 100 independent runs, are

shown in the figures below. We generate random orders using the combinatorial model.

We first compute a set of k random permutations of [1, ..., n] and determine their product

order as described in Chapter 1. Not surprisingly, we see that the expected number of

non-empty layers decreases quite sharply, supporting the fact that the expected height is

bounded by O(n
1
k ). It is also interesting to note the behavior of w∗(n, k) as k increases. It

is evident from Figure 2.3 that w∗(n, k) tends to a linear function of n (for a fixed k). This

is consistent with the fact that limk→∞w∗(n, k) = w, as the number of layers in P decreases

and we already know that the expected width w is bounded by O(n1−1/k) for fixed k.

9
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Chapter 3: Computing Maximal Layers

Computing the setML1(P ) is an well studied problem in computational geometry. In this

chapter we look at the problem of computing all of the non-empty maximal layers of P ,

when P is a random order. The chapter is organized as follows. In the next section we

review some related work. Section 3.2 describes in detail the proposed algorithm and its

run-time analysis is done in Section 3.3. In Section 3.4 we introduce a new data-structure

which is then used to further shape the runtime of the proposed algorithm. We conclude

with Section 3.5 in which we extend our result for orders that are not-necessarily uniformly

random as defined in Chapter 1.

3.1 Related Work

Henceforth we shall denote the the problem of identifying the layers of P having n elements

in k dimensions as MaxLayers(n, k). There exists a tight bound for MaxLayers(n, k)

when k ≤ 3, which is Θ(n log n) [10–12]. However, we do not have any better lower bound

when k > 3. For fixed k > 3 best known upper-bound is O(n logk−1 n) [13]. Interestingly,

the upper bound to find only the first maximal set is O(n logmax(1,k−2) n). The previous

two results hold in worst-case. We see that, for fixed k, these algorithms can be regarded

as almost optimal, as they only have a poly-logarithmic overhead over the theoretical lower

bound of Ω(n log n). Conceptually, they implement multi-dimensional divide and conquer

algorithms [14] on input P which introduces the poly-log factor in their runtimes. The set

P is partitioned into sub-sets that are both smaller in the number of dimensions as well as

the number of points. We shall briefly go over the original algorithm proposed in [15] which

computes the first maximal layer of P .

11



Algorithm 1: Maximal Finding Algorithm as Proposed in [15]

Input : Point set P (x1, ..., xn)

Output:ML1(P )

1 Sort (x1[1], ..., xn[1]) ; // sort the points in their first coordinates

2 MaximalLayer (P)

3 begin

4 Partition P into two halves according to the sorted ordering (y1, ..., yn) in

dimension 1;

5 Let, L← (y1, ..., yn/2) and R← (yn/2+1, ..., yn);

6 Recursively find the MaximalLayer (L) and MaximalLayer (R);

7 Find the set S ⊂ MaximalLayer(R) such that no elements in MaximalLayer(L)

dominates any elements in S;

8 return MaximalLayer(L) ∪ S

From the pseudo-code above we can see that both the subsets L and R can solved inde-

pendent of each other before combining the results. Also, when merging MaximalLayer(L)

and S we have to loot at only k − 1 of the dimensions, as the elements are already sorted

in one of the dimensions. Analyzing this algorithm leads to a run-time of O(n logk−2 n) in

the worst case (k ≥ 4). Subsequently Jensen [13] extended this algorithm to identify all the

layers in O(n logk−1 n) deterministic time.

Things get interesting if k is part of the input. An extreme case when k = θ(n), these

poly-logarithmic upper-bounds above becomes quasi-polynomial (in n). However, there is

a trivial algorithm (which compares each point against the other, and keeps track of the

computed transitive relations) that requires O(kn2) time in the worst case. Although, for

finding only the first maximal layer, [16] Matousek proposed a deterministic algorithm that

runs in O(n(3+ω)/2) when k = n, where, O(nω) is the complexity of multiplying two n× n

matrices. Since ω > 2 we see that the algorithm runs in ω(n2) time. In a recent paper [17],

12



Impagliazzo and others show that for determining whether there exists a pair (u, v), where

u ∈ A and v ∈ B (A and B are both sets of vector of size O(n)) such that u ≻ v, can be

done in sub-quadratic time provided k = O(log n).

3.2 The Iterative Algorithm

3.2.1 Definations

We will use the notation S ≻ p, where S is a set of incomparable elements, to denote that

∃q ∈ S such that q ≻ p. If S ≻ p we say that S is above p. Furthermore, if p ⪰ q then either

p = q or p ≻ q. Let O : [0, 1]k × [0, 1]k → {0, 1}k, such that O(p, q)[j] = 1 if p[j] < q[j] and

0 otherwise. This definition, which might seem inverted, will make sense when we discuss

it in the context of our data structures. We call O the orthant function as it computes the

orthant with origin p in which q resides.

In our analysis we shall use the typical RAM model, where the operation of evaluating

p[j] ≥ q[j] takes constant time. We take P to be a random order as defined Chapter 1.

That is, we build P by picking points uniformly at random from [0, 1]k. We shall use

MaxPartition(P ) as the main procedure for solving an instance of MaxLayers(n, k).

3.2.2 Data Structures

In this section we introduce the framework on which MaxPartition(P ) is based. Let B

be a self-balancing binary search tree (for example B could be realized as a red-black tree).

Let B(i) be the ith node in the in-order traversal of B. Each node of B stores three pointers.

One for each of its children (null in place of an empty child) and another pointer which

points to an auxiliary data structure. If X is a node in B then left and right children of X

are denoted as l(X) and r(X) respectively. By L(X) we denote the auxiliary data structure

associate with X. When the context is clear, we shall simply use L in place of L(X).

We also use L as a placeholder for any data structure that can be used to store the set of

points of a single layer of P . For example, L could be realized as a linked list. Additionally,
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L must support Insert(L, p) and Above(L, p). The Above(L, p) operation takes a query

point p, and answers the query L
?
≻ p . The Insert(L, p) operation inserts p into L, which

assumes p is incomparable to the elements in L. So, we must ensure that L is the correct

layer for p before calling Insert(L, p).

We observe that the layers of P are themselves linearly ordered by their ranks from 1

to h. Thus we can use B to store the layers in sorted order, where each node B(i) would

store the corresponding layer Mi (using L(B(i))). We endow B with Insert(B, p) and

Search(B, p) (we do not need deletion) operations. The Insert(B, p) procedure first calls

the Search(B, p) procedure to identify which node B(i) of B the new point p should belong

and then calls Insert(L(B(i)), p). If p does not belong to any layer currently in B then we

create a new node in B. The Search(B, p) procedure works as follows: we can think of B

as a normal binary search tree, where the usual comparison operator ≥ has been replaced by

the Above(L, p) procedure. Furthermore, the procedure can only identify whether L ≻ p

or L ̸≻ p. This is exactly equivalent to the situation where we have replaced the comparison

operator ≥ with >. So we must determine two successive nodes B(i) and B(i + 1) such

that L(B(i)) ≻ p and L(B(i+1)) ̸≻ p. If such a pair of nodes does not exist then we return

a null node.

3.2.3 MaxPartition(P )

We begin by first computing a linear extension T of P . We initialize B as an empty tree. We

iteratively pick points from P in increasing order of their ranks in T and call Insert(B, p),

where p is the current point to be processed. Insert(B, p) subsequently calls Search(B, p).

We have two possibilities:

case 1: Search(B, p) returns a non-empty node B(i). We then call Insert(L(B(i), p).

case 2: Search(B, p) returns a null node. Then we create the node B(m + 1) in B,

where m is the number of nodes currently in B. We first initialize B(m+ 1) and then call

Insert(L(B(m+1), p) on it. We note that, when we create a new node in B it must always
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be the right-most node in the in-order traversal of B. This follows from the order in which

we process the points. Since p succeeds a processed point q in the linear extension T , hence

p ̸≻ q. Thus, if p does not belong to any of nodes currently in B then it must be the case

that p is below all layers in B. MaxPartition(P ) terminates after all points have been

processed. At termination L(B(i)) stores all of the points inMi for 1 ≤ i ≤ h. We make

a couple of observations here. 1) When a point is inserted into a node B(i) it will never

be displaced from it by any point arriving after it. 2) Since, nodes are always added as the

right-most node in B, for Search(B, p) to be efficient, B must support self-balancing.

If we assume that Above(L, p) and Insert(L, p) to work correctly, at once we see that

Search(B, p) and Insert(B, p) are also correct. Hence, each point is correctly assigned to

the layer it belongs to.
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Algorithm 2: The MaxPartition Procedure

Input : Point set P (x1, ..., xn)

Output: Labels each point with the rank of the layer is belongs to.

1 begin

2 Y ← LinearExtension (P ) ; // computes a linear extension of P

3 Initialize (B) ; // A self-balancing BST

4 for i← 1 to n do

5 Insert (B, yi) ;

1 Insert (B, y) begin

2 p← null;

3 Search (B, y, p);

4 Insert (p, y);

1 Search (B, y, p) begin

2 if L(B) = ∅ then

3 if p = null then

4 Create a new node B∗ ; // this will be the right-most node in

the BST

5 p← B∗(L);

6 if Above (L(B), y) then

7 Search (B.right, y, p)

8 else

9 p← L(B);

10 Search (B.left, y, p)
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3.3 Runtime Analysis

Let Above(L, p) take ta(|L|) time. As mentioned in section 3.2, |L| ≤ w for any layer in B.

Hence, ta(w) is an upper bound on the runtime of Above(L, p). Similarly, we bound the

runtime of Insert(L, p) with ti(w). Let p be the next point to be processed. At the time

B will have at most h nodes. In order to process p the Insert(B, p) will be invoked, which

in turn calls the Search(B, p) as discussed above. But the Search(B, p) will employ

a normal binary search on B with the exception that at each node of B it invokes the

Above(L, p) instead of doing a standard comparison. Since, B is self-balancing the height

of B is bounded by O(log h). Hence, the number of calls to Above(L, p) is also bounded

by O(log h), each of which takes ta(w) time. Also, for each point p, Insert(L, p) is called

only once. We also assume initializing a node in B takes constant time. So, processing of

p takes O(ta(w) log h+ ti(w)) and this holds for any point.

Lemma 1. We can compute a linear extension T of P in O(n log n+ kn) time in the worst

case.

Proof. We shall compute T as follows: Let µ(p) = max1≤j≤k p[j]. Then sorting the points

in decreasing order of µ(p) will give us T . It is trivial to see that T is a linear extension of

P . This takes O(n log n+ kn) in the worst case.

The reason for computing T in this way will be clear when we get to the analysis of

our algorithm. Later we shall see that the time bounds for Above(L, p) and Insert(L, p)

will dominate the time it takes to compute T . So we will ignore this term in our run-time

analysis. The next lemma trivially follows from the discussion above.

Lemma 2. The procedure MaxPartition(P ) takes O(n(ta(w) log h + ti(w))) time and

upon termination outputs a data structure consisting of the maximal layers of P in sorted

order.
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3.4 Realization of L using Half-Space Trees

In this section we introduce a new data structure for implementing L. We shall refer to it

as Half-Space Tree (HST).

The function O(p, q) computes which orthant q belongs to with respect to p as the origin.

Clearly, there are 2k such orthants, each having a unique label in {0, 1}k. Let Hj(p) be a

half space defined as: Hj(p) = {q ∈ [0, 1]k | O(p, q) = {0, 1}j−10{0, 1}k−j} passing through

origin p whose normal is parallel to dimension j. Here {0, 1}j−10{0, 1}k−j represents a 0-1

vector for which the jth component is 0. We shall use the notation hj(p) to denote the

extremum orthant of Hj(p) (w.r.t ≻), that is, hj(p) = 1j−101k−j . There are k such half

spaces. An orthant whose label contains m 1’s lies in the intersection of some k −m such

half spaces.

Lemma 3. If p, q ∈ P and p ∥ q then O(p, q) ∈ {0, 1}k \{0k, 1k}. That is, q can only belong

to orthants which lie in the intersection of at most k − 1 half spaces.

Proof. Trivially follows from definitions.

Corollary 1. The above lemma holds if p and q belongs to the same layer. However, the

converse of this statement is not true.

3.4.1 Half-Space Tree

We define a k-dimensional HST recursively as follows:

Definition 3.1. (HST).

1. A singleton node (root) storing a point p.

2. A root has a number of non-empty children nodes (up to k) each of which is a HST.

3. If node q is the jth child of node p then hj(p) ⪰ O(p, q).
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An HST stores points from a single layer. So Corollary 1 tells us that for any node p

and a new point q at most k − 1 of the children nodes satisfy hj(p) ⪰ O(p, q). Hence, q

can be inserted into any one out of these children nodes. Henceforth, we will also use w

(the width of (P,≻)) to bound the number of points currently stored inside L. By L.j we

denote the jth child node of L.

Above(L, p)

Let us assume that L is realized by an HST. The Above(L, p) works as follows: First we

compute O(r, p). Here, r is the root node. If O(r, p) = 0k then we return L ≻ p. Otherwise

we call Above(L.j, p) recursively on each non-empty child node j of root r, such that

hj(r) ⪰ O(r, p). When all calls reach some leaf node, we stop and return L ̸≻ p.

proof of correctness. case 1:(L ≻ p) Let q be some point in L such that q ≻ p, prior

to calling Above(L, p). Before reaching the node q, if we find some other node q′ ≻ p

then we are done. So we assume this is not the case. We claim that p will be compared

with q. We show this as follows: Let the length of path from root r to q be i + 1. Let

u0, ..., ui be the sequence of nodes in this path (here u0 = r and ui = q). Since, q ≻ p,

O(um, q) ⪰ O(um, p) for all 0 ≤ m < i. But, um is a predecessor node in the path from

r to q, hence hjm(um) ⪰ O(um, q) where um+1 is the jthm child of um. Which implies

hjm(um) ⪰ O(um, p) (from transitivity of ⪰) for 0 ≤ m < i. Thus we will traverse this path

at some point during our search.

case 2:(L ̸≻ p) Follows trivially from the description of Above(L, p).

Insert(L, p)

Insert(L, p) is called with the assumption that L ̸≻ p. If the root is empty then we make

p as the root and stop. Otherwise, we pick one element uniformly at random from the set

Sr = {j ∈ {1, ..., k} | hj(r) ⪰ O(r, p)} and recursively call Insert(L.j, p).
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proof of correctness. It is easy to verify that insert procedure maintains the properties of

HST given in definition 2.

Although the insert procedure is itself quite simple, it is important that we understand

the random choices it makes before moving further. These observation will be crucial to

our analysis later. Let the current height of L be hL. By L∗ we denote the complete HST

of height hL, clearly L∗ has Θ(khl) nodes. We color edges of L∗ red if both of the nodes it

is incident to are present in L, otherwise we color it blue. Unlike Above, we can imagine

that the Insert procedure works with L∗ instead of L. Upon reaching a node r in L∗ the

procedure samples uniformly at random from the set Sr as above. This set may contain

edges of either color. If a blue edge have been sampled then we stop and insert p into the

empty node incident to the blue edge in L. So we see that, despite not being in L, the

nodes incident to blue edges affect the sampling probability equally.

Algorithm 3: HSTSearch(H,x)

1 begin

2 r ← root (H);

3 if r = null or r ≻ x then

4 return

5 for i← 1 to k do

6 if x[i] ≤ r[i] then

7 HSTSearch (H.i, x)
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Algorithm 4: HSTInsert(H,x)

1 begin

2 if H = null then

3 Initialize (H, x)// A new layer is initialized with x at the

root return

4 r ← root(H);

5 Sr ← ∅;

6 for i← 1 to k do

7 if x[i] ≤ r[i] then

8 Sr ← Sr ∪ i

9 j ← U [Sr] ; // pick a half-space(child-node) uniformly at random

10 HSTInsert (H.j, x);

3.4.2 Runtime Analysis

Here we compute ta(w) and ti(w) in expectation over the random order P and the internal

randomness of the Insert(L, p) procedure. From the discussion in section 4.1 we clearly see

that ti(w) = O(ta(w)). So it suffices to upper bound ta(w) in expectation. Furthermore,

we only need to consider the case when Above(L, p) returns L ̸≻ p as the other case would

take fewer number of comparisons. Let this time be u(w). We divide our derivations to

compute u(w) into two main steps:

i. Compute the expected number of nodes at depth d of L having w number of nodes.

ii. Use that to put an upper bound on the number of nodes visited during a call to

Above(L, p) (when L ̸≻ p).

We choose to process points according to T as detailed earlier. We denote this ordering by

the ordered sequence (p1, ..., pn).
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Lemma 4. For any two points p, q where p precedes q in T we have the probability that

p[j] > q[j] is η1(k) = 1 − 1
2
k−1
k+1 . Additionally, if p and q are incomparable then it is

η2(k) = 1− 1
k −

1
2
k−2
k+2 .

Proof. Recall that T is a linear extension of P . Since p precedes q in T , µ(p) > µ(q).

Hence, ∃ j
′ ∈ {1, ..., k} such that p[j′] > q[j′]. Let j′ = argmax1≤j≤k p[j]. We compute the

probability Pr[p[j] > q[j] | µ(p) > µ(q)] in two parts over the disjoint sets {j = j
′} and

{j ̸= j
′}:

Pr[p[j] > q[j] | µ(p) > µ(q)] = Pr[p[j] > q[j] | j = j
′
, µ(p) > µ(q)] Pr[j = j

′
]

+ Pr[p[j] > q[j] | j ̸= j
′
, µ(p) > µ(q)] Pr[j ̸= j

′
]

= 1
1

k
+

(
1− 1

2

µ(q)

µ(p)

)(
1− 1

k

)
(3.1)

Since,

Pr[p[j] > q[j] | j ̸= j
′
, µ(p) > µ(q)] =

(µ(p)− µ(q))µ(q) + µ(q)2

2

µ(p)µ(q)
= 1− 1

2

µ(q)

µ(p)

This follows from the fact that p[j] and q[j] are independent random variables uniformly

distributed over [0, µ(p)] and [0, µ(q)] (given µ(p) > µ(q)) respectively. In the set {j =

j
′} clearly p[j] > q[j]. However, in the set {j ̸= j

′} the probability that p[j] > q[j] is(
1− 1

2
µ(q)
µ(p)

)
. We note that µ(p), µ(q) are themselves random variables. More importantly

they are i.i.d random variables having the following distribution:

Pr[µ(p) < t] = tk

on the interval [0, 1]. This follows from how points in P are constructed. We take the
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expectation of both side of Equation 3.1 over the event space generated by µ(p), µ(q) on

the set {µ(p) > µ(q)}:

Pr[p[j] > q[j] | µ(p) > µ(q)] = 1− 1

2
E
[
µ(q)

µ(p)
| µ(p) > µ(q)

](
1− 1

k

)

= 1− 1

2

(
k

k + 1

)(
1− 1

k

)
= 1− 1

2

(
k − 1

k + 1

)

A similar argument can be used to prove the second claim.

Theorem 3.1. After w number of insertions the expected number of nodes at depth d in

L is given by:

kd

(
1−

d∑
i=1

(1− 1
ki
)w−1∏d

j=1,j ̸=i (1−
1

ki−j )

)

Proof. Let Xw,d be the number of nodes at depth d of L after w insertions. Due to the

second assertion of Lemma 3 we know that any new point to be inserted can belong to any of

the k half-spaces with probability η2(k), which is constant over the half-spaces. The insert

procedure selects one of these candidate half-spaces uniformly at random. Thus it follows

from symmetry that a particular half-space will be chosen for insertion with probability 1
k .

If the subtree is non-empty then we do these recursively. We define an indicator random

variable for the event that the tth insertion adds a node at depth d as It,d. Then,

Xw,d =

w∑
t=1

It,d

Taking expectation on both side we get,

E[Xw,d] =

w∑
t=1

Pr[It,d]
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Trivially, E[Xw,0] = 1 for t > 0. When d = 1 and t ≥ 2 then Pr [It,1] = 1 − Xt−1,1

k . This

is because there are Xt−1,1 nodes at depth 1 (nodes directly connected to the root) hence

there are k −Xt−1,1 empty slots for the node to get inserted at depth 1, otherwise it will

be recursively inserted to some deeper node. Hence we have,

E[Xw,1] =
w∑
t=2

(
1− Xt−1,1

k

)

For d = 2, we can similarly argue that the probability of insertion at depth 2 for some t ≥ 3

is equal to probability of reaching a node at depth 1 times the probability of being inserted

at depth 2. It is not difficult to see that this equals:
(
Xt−1,1

k

)(
1− Xt−1,2

kXt−1,1

)
. Hence,

E[Xw,2] =

w∑
t=3

(
Xt−1,1

k

)(
1− Xt−1,2

kXt−1,1

)

Proceeding in this way we see that,

E[Xw,d] =

w∑
t=1

(
E[Xt−1,d−1]

kd−1
−

E[Xt−1,d]

kd

)

Here we again take expectation on both sides and simplify the expression so that the sum

starts from t = 1 since the terms E[Xt,d] = 0 when t ≤ d.

Let a(w, d) = E[Xw,d], we can then simplify the above equation to get the following

recurrence,

a(w, d) =
a(w − 1, d− 1)

kd−1
+

(
1− 1

kd

)
a(w − 1, d)

with a(w, d) = 0 for w ≤ d. The solution to this can be found by choosing a ordinary

generating function Gd(z) with parameter d, such that Gd(z) =
∑∞

t=0 a(t, d)z
t. To simplify
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our calculations we modify the recurrence slightly: With a(w, d) = kdb(w, d), the recurrence

equation becomes,

b(w, d) =
1

kd
b(w − 1, d− 1) + (1− 1

kd
)b(w − 1, d)

Let, Gd(z) =
∑∞

w=0 b(w, d)z
w. We note that b(w, d) = 0 when w ≤ d. Then we have,

Gd(z) =
z

kd
Gd−1(z) + z(1− 1

kd
)Gd(z)

=
z

kd(1− (1− 1
kd
)z)

Gd−1(z)

...

=
zd∏d

i=1 k
i(1− (1− 1

ki
)z)

G0(z)

But, G0(z) =
∑∞

w=0 b(w, 0)z
w =

∑∞
w=1 z

w = z
1−z as b(w, 0) = a(w, 0) = 1 when w ≥ 1.

Hence,

b(w, d) = k−d(d+1)/2[zw−d−1]Gd(z)

= k−d(d+1)/2[zw−d−1]
1

(1− z)
∏d

i=1 (1− (1− k−i)z)
(3.2)

Where the notation [zi]p(z) means the coefficient of zi in the polynomial p(z) as usual.

Using partial fractions: Let,

1

(1− z)
∏d

i=1 (1− (1− k−i)z)
≡ β0

1− z
+

d∑
i=1

βi
(1− (1− k−i)z)
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For which we get the following solution,

β0 = kd(d+1)/2

βi =
kd(d+1)/2(1− k−i)d∏d

j ̸=i,j≥1 (1− kj−i)

Substituting these in Equation 4 above we get, b(w, d) = 1 −
∑d

i=1
(1−k−i)w−1∏d

j=1,j ̸=i (1−kj−i)
, which

gives us the desired result for a(w, d).

Before moving on to the main theorem we need another lemma:

Lemma 5. If B = (b0, b1, ..., bn) is a sequence such that br ≥ br+1 ≥ ... ≥ bn, then the sum

S =
∑n

i=0 bim
i ≤

∑r
i=0 bim

i + br+1mr+1

(1−m) where m < 1.

Proof. We have, S =
∑n

i=0 bim
i, where br ≥ br+1 ≥ ... ≥ bn. But then,

S =
r∑

i=0

bim
i +

n∑
i=r+1

bim
i ≤

r∑
i=0

bim
i +

n∑
i=r+1

br+1m
i

=
r∑

i=0

bim
i +

br+1m
r+1

1−m

Corollary 2. If m = 1− 1
2
k−1
k+1 and k ≥ 4 then , S ≤

∑r
i=0 bim

i + 7
3br+1m

r.

Theorem 3.2. Expected number of nodes visited during an unsuccessful search u(w) is

bounded by O
(
w

1− 1
log k

+logk (1+ 2
k+1)

)
.

Proof. Before proving this we make the following observation. If for any d = d0, the sequence

a(w, d) becomes decreasing, that is, a(w, d0) ≥ a(w, d0 − 1) and a(w, d0) > a(w, d0 + 1),
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then afterwards it will stay decreasing. This is clear from the fact that a(w, d) represents

the expected number of nodes at depth d after w insertions. So the sequence a(w, d) is

unimodal since a(w, 0) ≤ a(w, 1) trivially for w ≥ 2. Let d0 be the value that maximizes

a(w, d).

Let us compute the probability of visiting a node at depth d during a call to Above

when the query point is not below L. Let q be the current node being checked and p be the

query point. According to Lemma 3 the probability Pr[p ∈ Hj(q)] is same for any j and is

not dependent on the rank of q in T . Hence it is also not dependent on the depth of q in

L. Furthermore, this probability is η1 = 1− 1
2
k−1
k+1 , again from Lemma 3.

Thus the probability of visiting a node at depth d is the result of d independent moves

each having probability η1, hence it is ηd1 . Now we can find the expression for the expected

number of nodes visited:

u(w) =

w−1∑
d=0

ηd1a(w, d)

≤
d0∑
d=0

ηd1a(w, d) +
7

3
ηd01 a(w, d0 + 1)

(3.2)

Here we use Theorem 2, Lemma 4 and its corollary and the fact that the sequence a(w, d)

is unimodal; to bound u(w). Also note that a(w, d) ≤ kd. Now we need to upper bound d0.

We shall denote d0 as d0(w, k) as it is a function of both w and k. Hence, d0(w, k)

maximizes a(w, d) as d varies from 0 to w−1. Since we are interested in an upper bound on

d0(w, k), we may think of d being fixed and we vary w from 0 to∞1. If we then lower bound

w, when a(w, d) maximum, we will be able get a corresponding upper bound for d0(w, k).

This makes our analysis simpler as the number of terms in the expression for a(w, d) is fixed

1actually from d+ 1 as terms below it are 0, but this does not affect our analysis
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for a fixed d.

Let

a′(w, d) = a(w, d− 1)− a(w, d)

= kd−1

(
1−

d−1∑
i=1

(1− 1
ki
)w−1∏d−1

j=1,j ̸=i (1−
1

ki−j )

)
− kd

(
1−

d∑
i=1

(1− 1
ki
)w−1∏d

j=1,j ̸=i (1−
1

ki−j )

)

Letting αi = 1− 1
ki

we get,

a′(w, d) = −kd−1(k − 1) + kd−1
d∑

i=1

αi
w−1(k − αi−d)∏d
j=1,j ̸=i αi−j

Since we wish to compute d0(w, k) or at least get an upper bound, we assume that a′(w, d) <

0. Hence,

d∑
i=1

αi
w−1(k − αi−d)∏d
j=1,j ̸=i αi−j

< k − 1

Since,
∏d

j=1,j ̸=i αi−j =
∏i−1

j=1 αi−j
∏d−i

j=1 (1− kj) = P (i − 1)
∏d−i

j=1 (1− kj), where, P (i) =∏i−1
j=1 αi−j .

Let A = k
∑d

i=1
αi

w−1

P (i−1)
∏d−i

j=1 1−kj
and B =

∑d
i=1

αi
w−1αi−d

P (i−1)
∏d−i

j=1 1−kj
. So according to our

assumption, A+B < k − 1.

However, writing out the terms in the expression for A yields:
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A = k

(
αw−1
d

P (d− 1)
−

αw−1
d−1

(k − 1)P (d− 2)
+

αw−1
d−2

(k − 1)(k2 − 1)P (d− 3)
− ...

)

= k

(
αw−1
d

P (d− 1)
−

αw−1
d−1

(k − 1)P (d− 2)
+ o(

1

k2
)− ...

)

≥ k

(
αw−1
d

P (d− 1)
−

αw−1
d−1

(k − 1)P (d− 2)

)

It is not difficult to see that
αw−1
d−2

(k−1)(k2−1)P (d−3)
− ... ≤ o( 1

k2
), since, P (i) < P (j) when i > j

and αw−1
i decreases as i→ 0. Similarly, we can show that,

B ≥ −
αw−1
d−1

P (d− 2)

Thus we get,

k
αw−1
d

P (d− 1)
−

αw−1
d−1

P (d− 2)

(
1 +

k

k − 1

)
< k − 1

Since we want to get an upper bound for d0(w, k) we assume that w is sufficiently large.

More precisely, we let w ≥ ckd−1 + 1 where 0 < c < 1. But then,

αw−1
d−1 =

(
1− 1

kd−1

)w−1

≤
(
1− 1

kd−1

)ckd−1

≤ e−c ≈ 3

5

where we take c = 1
2 . Putting this value for αw−1

d−1 in the main equation and dividing both
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sides by k we get,

αw−1
d

P (d− 1)
< 1− 1

k
+

3

5

2k − 1

k(k − 1)P (d− 1)
,

since P (d− 1) < P (d− 2). But,

P (d− 1) > P (d) =

(
1− 1

k

)(
1− 1

k2

)
...

(
1− 1

kd−1

)

= 1− 1

k
− 1

k2
+

1

k5
+

1

k7
+ ... ≥ 1− 1

k
− 1

k2

And P (d− 1) < 1− 1
k . Substituting these upper and lower bound of P (d− 1) to the LHS

and RHS of the expression respectively we get,

k
αw−1
d

k − 1
< 1− 1

k
+

3

5

(2k − 1)k

(k − 1)(k2 − k − 1)
≤ 1 +

γ(k)

k

Where 0 < γ(k) < 1 for k ≥ 4. So we have,

1− w

kd
<

(
1− 1

kd

)w

< αw−1
d <

(
1 +

γ(k)

k

)(
1− 1

k

)
< 1− 1

k2

So we get, d < logk w + 2. This is the upper bound on d0(w, k) that we have sought.

Let d0 ≤ β + 3, where β = ⌊logk w⌋. Hence, for k ≥ 4,
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u(w) =

w−1∑
d=0

ηd1a(w, d)

≤
d0∑
d=0

ηd1a(w, d) +
7

3
ηd01 a(w, d0 + 1)

≤
β∑

d=0

ηd1k
d + η1

β+1(a(w, β + 1) + a(w, β + 2) + a(w, β + 3)) +
7

3
ηβ+3
1 a(w, β + 4)

Here we observe that, a(w, β + i) ≤ w for 1 ≥ i ≥ 4. Substituting these bounds we get,

u(w) ≤ (η1k)
β+1 − 1

η1k − 1
+ c1wη

β+1
1

where c1 < 5 is a constant. Thus

u(w) ≤ (η1k)
β(η1k)

η1k − 1
+ c1wη

β+1
1

≤ c2(η1k)
β + c1wη

β+1
1

≤ c2(η1k)
⌊logk w⌋ + c1wη

⌊logk w⌋+1
1

≤ c2(η1k)
logk w + c1wη

logk w
1

≤ (c1 + c2)wη
logk w
1 ≤ c3w

1− 1
log k

+logk (1+ 2
k+1

)

where, c2 ≤ 14
9 and c3 are constants. Which leads to
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u(w) ≤ O
(
w

1− 1
log k

+logk (1+ 2
k+1)

)
.

This proves Theorem 3.

Corollary 3. MaxPartition runs in O
(
kn

2− 1
log k

+logk (1+ 2
k+1) log n

)
in expectation.

Proof. From Theorem 1 and the first paragraph of Section 4.2 we see that the runtime of

MaxPartition is O(knu(w) log h). Since computing O(p, q) between pairs of vectors takes

O(k) time. Using the upper-bound of u(w) and the fact that w, h ≤ n we get the runtime

of MaxPartition as claimed above.

3.4.3 Extension of MaxPartition to Other Distributions

It is quite easy to modify the analysis in the previous section for points sampled from an

arbitrary distributions. That is, for each point x ∈ P , we pick x[i] from D[0, 1] for all

1 ≤ i ≤ k. Where, D[0, 1] is a distribution function on [0, 1]. For such a P we can extend

our run-time analysis as follows: first we look at the probability η2(k) in this new setting.

We note that we do not use the value of η2(k) explicitly, just the fact that its same for each

dimension. Clearly, this probability still remains independent of the dimension j in the new

setting. This applies to η1(k) also, as can be seen below:

Pr[p[j] > q[j] | µ(p) > µ(q)] =

∫ µ(p)

0

∫ s

0
dF[0,µ(q)](t)dF[0,µ(p)](s)

Where, F[a,b](t) is the c.d.f of the distribution D[a, b] in the interval [a, b]. Clearly, this

probability is independent of j. The same can be said about η2(k). In fact we can forgo

the assumption that each point is identically distributed. That is for each x ∈ P we
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pick x[i] from Dx[0, 1] for all i. Even in this setting both η1(k, p, q) and η2(k, p, q) will be

invariant under change of dimensions even though they will now depend also on the pair

p, q. Furthermore, Theorem 2 still holds under this new setting without needing to make

any changes. The expected run-time of the MaxPartition procedure, which depends on

η1, will change and would depend on the distributions Dx[0, 1]. However, we observed that

η1(k, p, q) ≤ 1 − 1/k otherwise p ≻ q. Hence, using this upper bound on η1(k, p, q) we can

determine an upper bound on the expected run-time by substituting the appropriate value

in place of η1 in the proof of Theorem 3. Which leads to a run-time of O(k2n1+logk (k−1))

in this new setting.

3.4.4 A Summary of Results

We summarize the main results as follows:

i. k is a constant. From Corollary 3 we can easily verify that MaxPartition has a

runtime that is bounded by O(n2−δ(k)) where δ(k) > 0.

ii. k is some function of n. For any k the runtime of our algorithm is bounded by O(kn2)

in the worst case. This bound does not hold for the divide-and-conquer algorithm in

[13]. Also, The proposed algorithm never admits a quasi-polynomial runtime unlike

any of the previously proposed non-trivial algorithms.

iii. When points in P have arbitrary distributions. For this case we get a run-time of

O(k2n1+logk (k−1)) in expectation, regardless of the underlying distribution. It can be

shown that the run-time complexity grows slower than that in [13] whenever k =

Ω(log n).
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Chapter 4: Concluding Remarks

In this thesis we revisit random partials orders as introduced in [2]. We study a fundamental

property of random orders: the expected size distribution of different maximal layers. For

the case when the random order consists of points in a plane we formulate an expression

for the size distribution of the maximal sets. It turns out that the expected size of differ-

ent maximal layers depends on computing the number of permutations having increasing

subsequence of a certain size. Since the latter problem does not yet have any closed form,

it makes enumerative formulation of the size distribution of maximal sets difficult. Our

experimental simulations shows that the size distribution follows a bell shape pattern. It is

likely that shape (in terms of the layers) of a random partial order is like an “onion”; size

of the latter layers decreases sharply after some “fat” layer. It can be conjectured that the

maximum size of any layer has a similar bound to that of the width of the poset.

In the second half of this thesis we explore the computational aspect of the problem.

That is we investigate the problem of identifying the different maximal layers of a random

order. In particular we propose a randomized algorithm whose expected runtime is better

than current best known, whenever the number of dimensions is large (Ω(log n/ log log n)).

Although the bonds provided here hold only in expectation, we note that in the worst

case the algorithm only takes O(kn2) time. This is in contrast to existing deterministic

algorithms that have super-polynomial run-times (in n) whenever k is Ω(log n/ log logn).

It would be interesting to see if the proposed algorithm can be made deterministic

without going over the o(n2) upper-bound for constant k. Another area of interest is to

see if the algorithm can be extended to inputs that are not necessarily random orders. For

example in Section 3.4.4 we show how we can use it for the case when the input set of

vectors were chosen with some arbitrary distribution and not uniformly at random. Ideally,
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one would hope to extend it for arbitrary posets (of vectors). Lastly, it is worth looking into

the application of HST for other similar problems in computational geometry. In particular

it would be interesting to know whether HST or some modification of it can be used to

store points within a convex layer instead of a maximal layer. This may lead to a faster

algorithm for the convex layers problem in higher dimension.
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Appendix A: Publications

List of publications arising out of materials from this thesis, in reverse chronological order.

1. Avah B., Dana Richards, “Computing Maximal Layers Of Points in Ef(n)”. Accepted

in Latin American Theoretical Informatics Symposium (LATIN) (2016).

2. Avah B., Dana Richards, “Distribution Of Maximal Layers Of Random Orders”,

Congressus Numerantium 225, 211-216 (2015).

3. Avah B., Dana Richards, “On Maximal Layers Problem”. Forty-Sixth Southeastern

International Conference on Combinatorics, Graph Theory, and Computing (Talk)

(2015).

36



Bibliography

[1] G. Brightwell, “Random k-dimensional orders: Width and number of linear exten-
sions,” Order, vol. 9, no. 4, pp. 333–342, 1992.

[2] P. Winkler, “Random orders,” Order, vol. 1, no. 4, pp. 317–331, 1985.
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